scholarly journals The Deubiquitylation Activity of Ubp8 Is Dependent upon Sgf11 and Its Association with the SAGA Complex

2005 ◽  
Vol 25 (3) ◽  
pp. 1173-1182 ◽  
Author(s):  
Kenneth K. Lee ◽  
Laurence Florens ◽  
Selene K. Swanson ◽  
Michael P. Washburn ◽  
Jerry L. Workman

ABSTRACT Covalent modifications of the histone tails and the cross talk between these modifications are hallmark features of gene regulation. The SAGA histone acetyltransferase complex is one of the most well-characterized complexes involved in these covalent modifications. The recent finding that the removal of the ubiquitin group from H2B is performed by a component of SAGA, Ubp8, is intriguing as it assigns two posttranslation modification processes to one complex. In this work, we characterize the association of Ubp8 with SAGA and the effect that acetylation and deubiquitylation have on one another in vitro and in vivo. We found not only that Ubp8 is a part of the SAGA complex, but also that its deubiquitylation activity requires Ubp8's association with SAGA. Furthermore, we found that the Ubp8 association with SAGA requires Sgf11 and that this requirement is reciprocal. We also found that the acetylation and deubiquitylation activities of SAGA are independent of one another. However, we found that preacetylating histone H2B inhibited subsequent deubiquitylation. Additionally, we found that increasing the ubiquitylation state of H2B inhibited the expression of the ARG1 gene, whose repression was previously shown to require the RAD6 ubiquitin ligase. Taken together, these data indicate that the expression of some genes, including ARG1, is regulated by a balance of histone H2B ubiquitylation in the cell.

2008 ◽  
Vol 29 (1) ◽  
pp. 266-280 ◽  
Author(s):  
Armin M. Gamper ◽  
Jaehoon Kim ◽  
Robert G. Roeder

ABSTRACT Human STAGA is a multisubunit transcriptional coactivator containing the histone acetyltransferase GCN5L. Previous studies of the related yeast SAGA complex have shown that the yeast Gcn5, Ada2, and Ada3 components form a heterotrimer that is important for the enzymatic function of SAGA. Here, we report that ADA2a and ADA2b, two human homologues of yeast Ada2, each have the ability to form a heterotrimer with ADA3 and GCN5L but that only the ADA2b homologue is found in STAGA. By comparing the patterns of acetylation of several substrates, we found context-dependent requirements for ADA2b and ADA3 for the efficient acetylation of histone tails by GCN5. With human proteins, unlike yeast proteins, the acetylation of free core histones by GCN5 is unaffected by ADA2b or ADA3. In contrast, the acetylation of mononucleosomal substrates by GCN5 is enhanced by ADA2b, with no significant additional effect of ADA3, and the efficient acetylation of nucleosomal arrays (chromatin) by GCN5 requires both ADA2b and ADA3. Thus, ADA2b and ADA3 appear to act at two different levels of histone organization within chromatin to facilitate GCN5 function. Interestingly, although ADA2a forms a complex(es) with GCN5 and ADA3 both in vitro and in vivo, ADA2a-containing complexes are unable to acetylate nucleosomal H3. We have also shown the preferential recruitment of ADA2b, relative to ADA2a, to p53-dependent genes. This finding indicates that the previously demonstrated presence and function of GCN5 on these promoters reflect the action of STAGA and that the ADA2a and ADA2b paralogues have nonredundant functional roles.


2020 ◽  
Author(s):  
Carme Nuno-Cabanes ◽  
Varinia Garcia-Molinero ◽  
Manuel Martín-Expósito ◽  
Maria-Eugenia Gas ◽  
Paula Oliete-Calvo ◽  
...  

Abstract BackgroundHistone H2B deubiquitination is performed by numerous deubiquitinases in eukaryotic cells including Ubp8, the catalytic subunit of the tetrameric deubiquitination module (DUBm: Ubp8; Sus11; Sgf11; Sgf73) of the Spt-Ada- Gcn5 acetyltransferase (SAGA). Ubp8 is linked to the rest of SAGA through Sgf73 and is activated by the adaptors Sus1 and Sgf11. It is unknown if DUBm/Ubp8 might also work in a SAGA-independent manner.ResultsHere we report that a tetrameric DUBm is assembled independently of the SAGA-core components SPT7, ADA1 and SPT20. In the absence of SPT7, i.e. independent of the SAGA complex, Ubp8 and Sus1 are poorly recruited to SAGA-dependent genes and to chromatin. Notably, cells lacking Spt7 or Ada1, but not Spt20, show lower levels of nuclear Ubp8 than wild type cells, suggesting a possible role for SAGA CORE subunits in Ubp8 localization. Last, deletion of SPT7 leads to defects in Ubp8 deubiquitinase activity in in vivo and in vitro assays.ConclusionsCollectively, our studies show that a stable DUBm is assembled regardless of SAGA integrity; however its function and localization is affected by the absence of Spt7 or Ada1.


2016 ◽  
Vol 36 (22) ◽  
pp. 2855-2866 ◽  
Author(s):  
Wenqian Li ◽  
Boyko S. Atanassov ◽  
Xianjiang Lan ◽  
Ryan D. Mohan ◽  
Selene K. Swanson ◽  
...  

The SAGA complex contains two enzymatic modules, which house histone acetyltransferase (HAT) and deubiquitinase (DUB) activities. USP22 is the catalytic subunit of the DUB module, but two adaptor proteins, ATXN7L3 and ENY2, are necessary for DUB activity toward histone H2Bub1 and other substrates. ATXN7L3B shares 74% identity with the N-terminal region of ATXN7L3, but the functions of ATXN7L3B are not known. Here we report that ATXN7L3B interacts with ENY2 but not other SAGA components. Even though ATXN7L3B localizes in the cytoplasm, ATXN7L3B overexpression increases H2Bub1 levels, while overexpression of ATXN7L3 decreases H2Bub1 levels. In vitro , ATXN7L3B competes with ATXN7L3 to bind ENY2, and in vivo , knockdown of ATXN7L3B leads to concomitant loss of ENY2. Unlike the ATXN7L3 DUB complex, a USP22-ATXN7L3B-ENY2 complex cannot deubiquitinate H2Bub1 efficiently in vitro . Moreover, ATXN7L3B knockdown inhibits migration of breast cancer cells in vitro and limits expression of ER target genes. Collectively, our studies suggest that ATXN7L3B regulates H2Bub1 levels and SAGA DUB activity through competition for ENY2 binding.


2010 ◽  
Vol 30 (7) ◽  
pp. 1673-1688 ◽  
Author(s):  
Xuan Shirley Li ◽  
Patrick Trojer ◽  
Tatsushi Matsumura ◽  
Jessica E. Treisman ◽  
Naoko Tanese

ABSTRACT The mammalian SWI/SNF chromatin-remodeling complex facilitates DNA access by transcription factors and the transcription machinery. The characteristic member of human SWI/SNF-A is BAF250/ARID1, of which there are two isoforms, BAF250a/ARID1a and BAF250b/ARID1b. Here we report that BAF250b complexes purified from mammalian cells contain elongin C (Elo C), a BC box binding component of an E3 ubiquitin ligase. BAF250b was found to have a BC box motif, associate with Elo C in a BC box-dependent manner, and, together with cullin 2 and Roc1, assemble into an E3 ubiquitin ligase. The BAF250b BC box mutant protein was unstable in vivo and was autoubiquitinated in a manner similar to that for the VHL BC box mutants. The discovery that BAF250 is part of an E3 ubiquitin ligase adds an enzymatic function to the chromatin-remodeling complex SWI/SNF-A. The immunopurified BAF250b E3 ubiquitin ligase was found to target histone H2B at lysine 120 for monoubiquitination in vitro. To date, all H2B monoubiquitination was attributed to the human homolog of yeast Bre1 (RNF20/40). Mutation of Drosophila osa, the homolog of BAF250, or depletion of BAF250 by RNA interference (RNAi) in cultured human cells resulted in global decreases in monoubiquitinated H2B, implicating BAF250 in the cross talk of histone modifications.


1999 ◽  
Vol 19 (9) ◽  
pp. 5952-5959 ◽  
Author(s):  
Annika E. Wallberg ◽  
Kristen E. Neely ◽  
Jan-Åke Gustafsson ◽  
Jerry L. Workman ◽  
Anthony P. H. Wright ◽  
...  

ABSTRACT Previous studies have shown that the Ada adapter proteins are important for glucocorticoid receptor (GR)-mediated gene activation in yeast. The N-terminal transactivation domain of GR, τ1, is dependent upon Ada2, Ada3, and Gcn5 for transactivation in vitro and in vivo. Using in vitro techniques, we demonstrate that the GR-τ1 interacts directly with the native Ada containing histone acetyltransferase (HAT) complex SAGA but not the related Ada complex. Mutations in τ1 that reduce τ1 transactivation activity in vivo lead to a reduced binding of τ1 to the SAGA complex and conversely, mutations increasing the transactivation activity of τ1 lead to an increased binding of τ1 to SAGA. In addition, the Ada-independent NuA4 HAT complex also interacts with τ1. GAL4-τ1-driven transcription from chromatin templates is stimulated by SAGA and NuA4 in an acetyl coenzyme A-dependent manner. Low-activity τ1 mutants reduce SAGA- and NuA4-stimulated transcription while high-activity τ1 mutants increase transcriptional activation, specifically from chromatin templates. Our results demonstrate that the targeting of native HAT complexes by the GR-τ1 activation domain mediates transcriptional stimulation from chromatin templates.


2021 ◽  
Vol 22 (11) ◽  
pp. 5712
Author(s):  
Michał Tracz ◽  
Ireneusz Górniak ◽  
Andrzej Szczepaniak ◽  
Wojciech Białek

The SPL2 protein is an E3 ubiquitin ligase of unknown function. It is one of only three types of E3 ligases found in the outer membrane of plant chloroplasts. In this study, we show that the cytosolic fragment of SPL2 binds lanthanide ions, as evidenced by fluorescence measurements and circular dichroism spectroscopy. We also report that SPL2 undergoes conformational changes upon binding of both Ca2+ and La3+, as evidenced by its partial unfolding. However, these structural rearrangements do not interfere with SPL2 enzymatic activity, as the protein retains its ability to auto-ubiquitinate in vitro. The possible applications of lanthanide-based probes to identify protein interactions in vivo are also discussed. Taken together, the results of this study reveal that the SPL2 protein contains a lanthanide-binding site, showing for the first time that at least some E3 ubiquitin ligases are also capable of binding lanthanide ions.


2019 ◽  
Vol 5 (5) ◽  
pp. eaau8857 ◽  
Author(s):  
M. Di Rienzo ◽  
M. Antonioli ◽  
C. Fusco ◽  
Y. Liu ◽  
M. Mari ◽  
...  

Optimal autophagic activity is crucial to maintain muscle integrity, with either reduced or excessive levels leading to specific myopathies. LGMD2H is a muscle dystrophy caused by mutations in the ubiquitin ligase TRIM32, whose function in muscles remains not fully understood. Here, we show that TRIM32 is required for the induction of muscle autophagy in atrophic conditions using both in vitro and in vivo mouse models. Trim32 inhibition results in a defective autophagy response to muscle atrophy, associated with increased ROS and MuRF1 levels. The proautophagic function of TRIM32 relies on its ability to bind the autophagy proteins AMBRA1 and ULK1 and stimulate ULK1 activity via unanchored K63-linked polyubiquitin. LGMD2H-causative mutations impair TRIM32’s ability to bind ULK1 and induce autophagy. Collectively, our study revealed a role for TRIM32 in the regulation of muscle autophagy in response to atrophic stimuli, uncovering a previously unidentified mechanism by which ubiquitin ligases activate autophagy regulators.


2003 ◽  
Vol 23 (19) ◽  
pp. 6944-6957 ◽  
Author(s):  
Nickolai A. Barlev ◽  
Alexander V. Emelyanov ◽  
Paola Castagnino ◽  
Philip Zegerman ◽  
Andrew J. Bannister ◽  
...  

ABSTRACT In yeast, the transcriptional adaptor yeast Ada2 (yAda2) is a part of the multicomponent SAGA complex, which possesses histone acetyltransferase activity through action of the yGcn5 catalytic enzyme. yAda2, among several SAGA proteins, serves to recruit SAGA to genes via interactions with promoter-bound transcription factors. Here we report identification of a new human Ada2 homologue, hAda2β. Ada2β differs both biochemically and functionally from the previously characterized hAda2α, which is a stable component of the human PCAF (human Gcn5 homologue) acetylase complex. Ada2β, relative to Ada2α, interacted selectively, although not stably, with the Gcn5-containing histone acetylation complex TFTC/STAGA. In addition, Ada2β interacted with Baf57 (a component of the human Swi/Snf complex) in a yeast two-hybrid screen and associated with human Swi/Snf in vitro. In functional assays, hAda2β (but not Ada2α), working in concert with Gcn5 (but not PCAF) or Brg1 (the catalytic component of hSwi/Snf complex), increased transcription via the B-cell-specific transcription factor Pax5/BSAP. These findings support the view that Gcn5 and PCAF have distinct roles in vivo and suggest a new mechanism of coactivator function, in which a single adaptor protein (Ada2β) can coordinate targeting of both histone acetylation and chromatin remodeling activities.


1999 ◽  
Vol 19 (1) ◽  
pp. 855-863 ◽  
Author(s):  
Keiko Ikeda ◽  
David J. Steger ◽  
Anton Eberharter ◽  
Jerry L. Workman

ABSTRACT Recent progress in identifying the catalytic subunits of histone acetyltransferase (HAT) complexes has implicated histone acetylation in the regulation of transcription. Here, we have analyzed the function of two native yeast HAT complexes, SAGA (Spt-Ada-Gcn5 Acetyltransferase) and NuA4 (nucleosome acetyltransferase of H4), in activating transcription from preassembled nucleosomal array templates in vitro. Each complex was tested for the ability to enhance transcription driven by GAL4 derivatives containing either acidic, glutamine-rich, or proline-rich activation domains. On nucleosomal array templates, the SAGA complex selectively stimulates transcription driven by the VP16 acidic activation domain in an acetyl coenzyme A-dependent manner. In contrast, the NuA4 complex facilitates transcription mediated by any of the activation domains tested if allowed to preacetylate the nucleosomal template, indicating a general stimulatory effect of histone H4 acetylation. However, when the extent of acetylation by NuA4 is limited, the complex also preferentially stimulates VP16-driven transcription. SAGA and NuA4 interact directly with the VP16 activation domain but not with a glutamine-rich or proline-rich activation domain. These data suggest that recruitment of the SAGA and NuA4 HAT complexes by the VP16 activation domain contributes to HAT-dependent activation. In addition, extensive H4/H2B acetylation by NuA4 leads to a general activation of transcription, which is independent of activator-NuA4 interactions.


1999 ◽  
Vol 19 (1) ◽  
pp. 86-98 ◽  
Author(s):  
David E. Sterner ◽  
Patrick A. Grant ◽  
Shannon M. Roberts ◽  
Laura J. Duggan ◽  
Rimma Belotserkovskaya ◽  
...  

ABSTRACT SAGA, a recently described protein complex in Saccharomyces cerevisiae, is important for transcription in vivo and possesses histone acetylation function. Here we report both biochemical and genetic analyses of members of three classes of transcription regulatory factors contained within the SAGA complex. We demonstrate a correlation between the phenotypic severity of SAGA mutants and SAGA structural integrity. Specifically, null mutations in the Gcn5/Ada2/Ada3 or Spt3/Spt8 classes cause moderate phenotypes and subtle structural alterations, while mutations in a third subgroup, Spt7/Spt20, as well as Ada1, disrupt the complex and cause severe phenotypes. Interestingly, double mutants (gcn5Δ spt3Δand gcn5Δ spt8Δ) causing loss of a member of each of the moderate classes have severe phenotypes, similar tospt7Δ, spt20Δ, or ada1Δmutants. In addition, we have investigated biochemical functions suggested by the moderate phenotypic classes and find that first, normal nucleosomal acetylation by SAGA requires a specific domain of Gcn5, termed the bromodomain. Deletion of this domain also causes specific transcriptional defects at the HIS3 promoter in vivo. Second, SAGA interacts with TBP, the TATA-binding protein, and this interaction requires Spt8 in vitro. Overall, our data demonstrate that SAGA harbors multiple, distinct transcription-related functions, including direct TBP interaction and nucleosomal histone acetylation. Loss of either of these causes slight impairment in vivo, but loss of both is highly detrimental to growth and transcription.


Sign in / Sign up

Export Citation Format

Share Document