Expression of type I and III collagen genes during differentiation of embryonic chicken myoblasts in culture

1984 ◽  
Vol 4 (8) ◽  
pp. 1483-1492
Author(s):  
L C Gerstenfeld ◽  
D R Crawford ◽  
H Boedtker ◽  
P Doty

Expression of type I and III procollagen genes was studied in embryonic chicken myoblast cell cultures, obtained from thigh muscles of 11-day-old embryos. Differentiation initiated by the addition of ovotransferrin (30 micrograms/ml) was followed visually by phase-contrast microscopy. Myoblast fusion and myotube formation were detected by day 3 and appeared to be complete by day 7. The synthesis of procollagens was monitored by labeling cell cultures for 1 h with [3H]proline and determining the radioactivity in procollagen chains by scanning densitometry of the fluorograms of the sodium dodecyl sulfate-polyacrylamide gels. A 10- to 20-fold increase in the rate of pro alpha-1(I), pro alpha-2(I), and pro alpha-1(III) collagen synthesis was observed, with the greatest increase occurring between days 3 and 9. Collagen mRNA levels in the myoblast cultures were examined by Northern blot and dot blot hybridization assays. The 10- to 20-fold increased rate of protein synthesis was accompanied by a 15-fold increase in the steady-state levels of pro alpha-1(I) and pro alpha-2(I) mRNAs and a 10-fold increase in the steady-state levels of pro alpha-1(III). As a correlate to the studies of collagen expression during myoblast differentiation, the expression of actin mRNAs was examined. Although alpha actin could be detected by day 4, a complete switch from lambda and beta to alpha actin was not observed in the time periods examined. Similar results were obtained in the analysis of RNA extracted from embryonic legs at days 12 and 17 of gestation. Myoblast differentiation is manifested by the accumulation of both muscle-specific mRNAs, such as actin, and type I and III procollagen mRNAs.

1984 ◽  
Vol 4 (8) ◽  
pp. 1483-1492 ◽  
Author(s):  
L C Gerstenfeld ◽  
D R Crawford ◽  
H Boedtker ◽  
P Doty

Expression of type I and III procollagen genes was studied in embryonic chicken myoblast cell cultures, obtained from thigh muscles of 11-day-old embryos. Differentiation initiated by the addition of ovotransferrin (30 micrograms/ml) was followed visually by phase-contrast microscopy. Myoblast fusion and myotube formation were detected by day 3 and appeared to be complete by day 7. The synthesis of procollagens was monitored by labeling cell cultures for 1 h with [3H]proline and determining the radioactivity in procollagen chains by scanning densitometry of the fluorograms of the sodium dodecyl sulfate-polyacrylamide gels. A 10- to 20-fold increase in the rate of pro alpha-1(I), pro alpha-2(I), and pro alpha-1(III) collagen synthesis was observed, with the greatest increase occurring between days 3 and 9. Collagen mRNA levels in the myoblast cultures were examined by Northern blot and dot blot hybridization assays. The 10- to 20-fold increased rate of protein synthesis was accompanied by a 15-fold increase in the steady-state levels of pro alpha-1(I) and pro alpha-2(I) mRNAs and a 10-fold increase in the steady-state levels of pro alpha-1(III). As a correlate to the studies of collagen expression during myoblast differentiation, the expression of actin mRNAs was examined. Although alpha actin could be detected by day 4, a complete switch from lambda and beta to alpha actin was not observed in the time periods examined. Similar results were obtained in the analysis of RNA extracted from embryonic legs at days 12 and 17 of gestation. Myoblast differentiation is manifested by the accumulation of both muscle-specific mRNAs, such as actin, and type I and III procollagen mRNAs.


1985 ◽  
Vol 5 (6) ◽  
pp. 1425-1433 ◽  
Author(s):  
L C Gerstenfeld ◽  
M H Finer ◽  
H Boedtker

Phorbol-12-myristate-13-acetate (PMA), a potent tumor promoter, was shown to have opposite effects on the cellular morphology and steady-state levels of beta-actin mRNA in embryonic chicken muscle fibroblasts and sternal chondrocytes. When fibroblasts were treated with PMA, they formed foci of densely packed cells, ceased to adhere to culture plates, and had significantly reduced levels of beta-actin mRNA and protein. Conversely, when treated with PMA, floating chondrocytes attached to culture dishes, spread out, and began to accumulate high levels of beta-actin mRNA and proteins. In the sternal chondrocytes the stimulation of the beta-actin mRNA production was accompanied by increased steady-state levels of fibronectin mRNAs and protein. These alterations were concomitant with a fivefold reduction in type II collagen mRNA and a cessation in its protein production. After fibronectin and actin mRNAs and proteins reached their maximal levels, type I collagen mRNA and protein synthesis were turned on. Removal of PMA resulted in reduced beta-actin mRNA levels in chondrocytes and in a further alteration in the cell morphology. These observed correlations between changes in cell adhesion and morphology and beta-actin expression suggest that the effect of PMA on cell shape and adhesion may result in changes in the microfilament organization of the cytoskeleton which ultimately lead to changes in the extracellular matrix produced by the cells.


1985 ◽  
Vol 5 (6) ◽  
pp. 1425-1433
Author(s):  
L C Gerstenfeld ◽  
M H Finer ◽  
H Boedtker

Phorbol-12-myristate-13-acetate (PMA), a potent tumor promoter, was shown to have opposite effects on the cellular morphology and steady-state levels of beta-actin mRNA in embryonic chicken muscle fibroblasts and sternal chondrocytes. When fibroblasts were treated with PMA, they formed foci of densely packed cells, ceased to adhere to culture plates, and had significantly reduced levels of beta-actin mRNA and protein. Conversely, when treated with PMA, floating chondrocytes attached to culture dishes, spread out, and began to accumulate high levels of beta-actin mRNA and proteins. In the sternal chondrocytes the stimulation of the beta-actin mRNA production was accompanied by increased steady-state levels of fibronectin mRNAs and protein. These alterations were concomitant with a fivefold reduction in type II collagen mRNA and a cessation in its protein production. After fibronectin and actin mRNAs and proteins reached their maximal levels, type I collagen mRNA and protein synthesis were turned on. Removal of PMA resulted in reduced beta-actin mRNA levels in chondrocytes and in a further alteration in the cell morphology. These observed correlations between changes in cell adhesion and morphology and beta-actin expression suggest that the effect of PMA on cell shape and adhesion may result in changes in the microfilament organization of the cytoskeleton which ultimately lead to changes in the extracellular matrix produced by the cells.


2002 ◽  
Vol 10 (2) ◽  
pp. 93-102 ◽  
Author(s):  
L. Elaine Epperson ◽  
Sandra L. Martin

Hibernators in torpor dramatically reduce their metabolic, respiratory, and heart rates and core body temperature. These extreme physiological conditions are frequently and rapidly reversed during the winter hibernation season via endogenous mechanisms. This phenotype must derive from regulated expression of the hibernator’s genome; to identify its molecular components, a cDNA subtraction was used to enrich for seasonally upregulated mRNAs in liver of golden-mantled ground squirrels. The relative steady-state levels for seven mRNAs identified by this screen, plus five others, were measured and analyzed for seasonal and stage-specific differences using kinetic RT-PCR. Four mRNAs show seasonal upregulation in which all five winter stages differ significantly from and are higher than summer (α2-macroglobulin, apolipoprotein A1, cathepsin H, and thyroxine-binding globulin). One of these mRNAs, α2-macroglobulin, varies during the winter stages with significantly lower levels at late torpor. None of the 12 mRNAs increased during torpor. The implications for these newly recognized upregulated mRNAs for hibernation as well as more global issues of maintaining steady-state levels of mRNA during torpor are discussed.


1988 ◽  
Vol 8 (11) ◽  
pp. 4625-4633
Author(s):  
A F Torri ◽  
S L Hajduk

We examined the expression of a nucleus-encoded mitochondrial protein, cytochrome c, during the life cycle of Trypanosoma brucei. The bloodstream forms of T. brucei, the long slender and short stumpy trypanosomes, have inactive mitochondria with no detectable cytochrome-mediated respiration. The insect form of T. brucei, the procyclic trypanosomes, has fully functional mitochondria. Cytochrome c is spectrally undetectable in the bloodstream forms of trypanosomes, but during differentiation to the procyclic form, spectrally detected holo-cytochrome c accumulates rapidly. We have purified T. brucei cytochrome c and raised antibodies that react to both holo- and apo-cytochrome c. In addition, we isolated a partial cDNA to trypanosome cytochrome c. An examination of protein expression and steady-state mRNA levels in T. brucei indicated that bloodstream trypanosomes did not express cytochrome c but maintained significant steady-state levels of cytochrome c mRNA. The results suggest that in T. brucei, cytochrome c is developmentally regulated by a posttranscriptional mechanism which prevents either translation or accumulation of cytochrome c in the bloodstream trypanosomes.


1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


1988 ◽  
Vol 64 (2) ◽  
pp. 705-709 ◽  
Author(s):  
P. de Lanerolle

The temporal relationships among increases in adenosine 3',5'-cyclic monophosphate (cAMP) levels, myosin dephosphorylation, and relaxation were investigated to clarify the mechanisms of airway muscle relaxation. Canine tracheal muscles isometrically contracted (82% of maximum force) with 10(-6) M methacholine were relaxed by adding either 4 x 10(-7) M atropine or 4 x 10(-5) M forskolin. Atropine had no effect on cAMP levels; myosin phosphorylation and force, however, decayed at the same rates and these two parameters returned to their basal pre-methacholine levels within 5 min. Forskolin treatment results in about a 10-fold increase in cAMP levels; myosin phosphorylation and force decayed simultaneously to their respective steady-state levels by 10 min but neither parameter returned to its pre-methacholine level. The addition of forskolin to muscles maximally contracted with 10(-4) M methacholine leads to about a 30-fold increase in cAMP levels. However, there are minimal decreases in myosin phosphorylation and force in these muscles. Thus myosin dephosphorylation appears to be essential for airway muscle relaxation, whereas an increase in cAMP in the absence of myosin dephosphorylation is insufficient to cause relaxation. Moreover, myosin dephosphorylation appears to be a common step in the cAMP-independent and cAMP-dependent mechanisms for airway muscle relaxation.


1998 ◽  
Vol 331 (2) ◽  
pp. 417-422 ◽  
Author(s):  
David C. RISHIKOF ◽  
Ping-Ping KUANG ◽  
Christine POLIKS ◽  
Ronald H. GOLDSTEIN

The steady-state level of α1(I) collagen mRNA is regulated by amino acid availability in human lung fibroblasts. Depletion of amino acids decreases α1(I) collagen mRNA levels and repletion of amino acids induces rapid re-expression of α1(I) mRNA. In these studies, we examined the requirements for individual amino acids on the regulation of α1(I) collagen mRNA. We found that re-expression of α1(I) collagen mRNA was critically dependent on cystine but not on other amino acids. However, the addition of cystine alone did not result in re-expression of α1(I) collagen mRNA. Following amino acid depletion, the addition of cystine with selective amino acids increased α1(I) collagen mRNA levels. The combination of glutamine and cystine increased α1(I) collagen mRNA levels 6.3-fold. Methionine or a branch-chain amino acid (leucine, isoleucine or valine) also acted in combination with cystine to increase α1(I) collagen mRNA expression, whereas other amino acids were not effective. The prolonged absence of cystine lowered steady-state levels of α1(I) collagen mRNA through a mechanism involving decreases in both the rate of gene transcription as assessed by nuclear run-on experiments and mRNA stability as assessed by half-life determination in the presence of actinomycin D. The effect of cystine was not mediated via alterations in the level of glutathione, the major redox buffer in cells, as determined by the addition of buthionine sulphoximine, an inhibitor of γ-glutamylcysteine synthetase. These data suggest that cystine directly affects the regulation of α1(I) collagen mRNA.


1987 ◽  
Vol 247 (3) ◽  
pp. 597-604 ◽  
Author(s):  
J Varga ◽  
J Rosenbloom ◽  
S A Jimenez

It has been previously shown that transforming growth factor beta (TGF beta) is capable of stimulating fibroblast collagen and fibronectin biosynthesis. The purpose of this study was to examine the mechanisms involved in TGF beta stimulation of fibroblast biosynthetic activity. Our results indicate that TGF beta causes a marked enhancement of the production of types I and III collagens and fibronectin by cultured normal human dermal fibroblasts. The rate of collagen production by fibroblasts exposed to TGF beta was 2-3-fold greater than that of control cells. These effects were associated with a 2-3-fold increase in the steady-state amounts of types I and III collagen mRNAs and a 5-8-fold increase in the amounts of fibronectin mRNAs as determined by dot-blot hybridization with specific cloned cDNA probes. In addition, the increased production of collagen and fibronectin and the increased amounts of their corresponding mRNAs remained elevated for at least 72 h after removal of TGF beta. These findings suggest that TGF beta may play a major role in the normal regulation of extracellular matrix production in vivo and may contribute to the development of pathological states of fibrosis.


2004 ◽  
Vol 48 (8) ◽  
pp. 2958-2965 ◽  
Author(s):  
Adriana Renzoni ◽  
Patrice Francois ◽  
Dongmei Li ◽  
William L. Kelley ◽  
Daniel P. Lew ◽  
...  

ABSTRACT The impact of glycopeptide resistance on the molecular regulation of Staphylococcus aureus virulence and attachment to host tissues is poorly documented. We compared stable teicoplanin-resistant methicillin-resistant S. aureus (MRSA) strain 14-4 with its teicoplanin-susceptible MRSA parent, strain MRGR3, which exhibits a high degree of virulence in a rat model of chronic foreign body MRSA infection. The levels of fibronectin-mediated adhesion and surface display of fibronectin-binding proteins were higher in teicoplanin-resistant strain 14-4 than in its teicoplanin-susceptible parent or a teicoplanin-susceptible revertant (strain 14-4rev) that spontaneously emerged during tissue cage infection. Quantitative reverse transcription-PCR (qRT-PCR) showed four- and twofold higher steady-state levels of fnbA and fnbB transcripts, respectively, in strain 14-4 than in its teicoplanin-susceptible counterparts. Analysis of global regulatory activities by qRT-PCR revealed a strong reduction in the steady-state levels of RNAIII and RNAII in the teicoplanin-resistant strain compared to in its teicoplanin-susceptible counterparts. In contrast, sarA mRNA levels were more than fivefold higher in strain 14-4 than in MRGR3 and 14-4rev. Furthermore, the alternative transcription factor sigma B had a higher level of functional activity in the teicoplanin-resistant strain than in its teicoplanin-susceptible counterparts, as evidenced by significant increases in both the sigma B-dependent asp23 mRNA levels and the sarA P3 promoter-derived transcript levels, as assayed by qRT-PCR and Northern blotting, respectively. These data provide further evidence that the emergence of glycopeptide resistance is linked by still poorly understood molecular pathways with significant pleiotropic changes in the expression and regulation of some major virulence genes. These molecular and phenotypic changes may have a profound impact on the bacterial adhesion and colonization properties of such multiresistant organisms.


Sign in / Sign up

Export Citation Format

Share Document