The kinetics of the B cyclin p56cdc13 and the phosphatase p80cdc25 during the cell cycle of the fission yeast Schizosaccharomyces pombe

1996 ◽  
Vol 109 (6) ◽  
pp. 1647-1653 ◽  
Author(s):  
J. Creanor ◽  
J.M. Mitchison

The levels of the B cyclin p56cdc13 and the phosphatase p80cdc25 have been followed in selection-synchronised cultures of Schizosaccharomyces pombe wild-type and wee1 mutant cells. p56cdc13 has also been followed in induction-synchronised cells of the mutant cdc2-33. The main conclusions are: (1) cdc13 levels in wild-type cells start to rise from base line at about mid-G2, reach a peak before mitosis and then fall slowly through G1. Cells exit mitosis with appreciable levels of cdc13. (2) cdc13 levels in wee1 cells fall to zero in interphase. They also start to rise at the beginning of G2, which may be related to the absence of a mitotic size control. (3) cdc25 starts to rise later and reaches a peak after mitosis. This is not what would be expected from a simple mitotic inducer and suggests that cdc25 has an important function at the end of mitosis. (4) An upper (heavier) band of cdc25 peaks at the same time as the main band but rises and falls more rapidly. If this is a hyperphosphorylated form, its timing shows that it is most unlikely to function in the ways shown for such a form in eggs and mammalian cells. (5) Experiments with the mutant cdc10-129 and with hydroxyurea show that the initial signal to begin synthesis of cdc13 originates at Start. (6) In induction synchrony, where G2 spans across cell division, there is evidence that some events in one cycle cannot start in the previous one. (7) Revised timings are given for the times of mitosis in these cultures.

1988 ◽  
Vol 8 (11) ◽  
pp. 4675-4684 ◽  
Author(s):  
F R Cross

The mating pheromone alpha-factor arrests Saccharomyces cerevisiae MATa cells in the G1 phase of the cell cycle. Size control is also exerted in G1, since cells do not exit G1 until they have attained a critical size. A dominant mutation (DAF1-1) which causes both alpha-factor resistance and small cell size (volume about 0.6-fold that of the wild type) has been isolated and characterized genetically and by molecular cloning. Several alpha-factor-induced mRNAs were induced equivalently in daf1+ and DAF1-1 cells. The DAF1-1 mutation consisted of a termination codon two-thirds of the way through the daf1+ coding sequence. A chromosomal deletion of DAF1 produced by gene transplacement increased cell volume about 1.5-fold; thus, DAF1-1 may be a hyperactive or deregulated allele of a nonessential gene involved in G1 size control. Multiple copies of DAF1-1 also greatly reduced the duration of the G1 phase of the cell cycle.


1985 ◽  
Vol 75 (1) ◽  
pp. 357-376 ◽  
Author(s):  
J.M. Mitchison ◽  
P. Nurse

The cylindrical cells of Schizosaccharomyces pombe grow in length by extension at the ends and not the middle. At the beginning of the cell cycle, growth is restricted to the ‘old end’, which existed in the previous cycle. Later on, the ‘new end’, formed from the septum, starts to grow at a point in the cycle that we have called NETO (‘new end take-off’). Fluorescence microscopy on cells stained with Calcofluor has been used to study NETO in size mutants, in blocked cdc mutants and with different growth temperatures and media. In wild-type cells (strain 972) NETO happens at 0.34 of the cycle with a cell length of 9.5 microns. With size mutants that are smaller at division, NETO takes place at the same size (9.0-9.5 microns) but this is not achieved until later in the cycle. Another control operates in larger size mutants since NETO occurs at the same stage of the cycle (about 0.32) as in wild type but at a larger cell size. This control is probably a requirement to have completed an event in early G2, since most cdc mutant cells blocked before this point in the cycle do not show NETO whereas most of those blocked in late G2 do show it. We conclude that NETO only happens if: (1) the cell length is greater than a critical value of 9.0-9.5 microns; and (2) the cell has traversed the first 0.3-0.35 of the cycle and passed early G2. NETO is delayed in poor media, in which cell size is also reduced. Temperature has little effect on NETO under steady-state conditions, but there is a transient delay for some hours after a temperature shift. NETO is later in another wild-type strain, 132. Time-lapse photomicrography was used to follow the rates of length growth in single cells. Wild-type cells showed two linear segments during the first 75% of the cycle. There was a rate-change point (RCP), coincident with NETO, where the rate of total length extension increased by 35%. This increase was not due simply to the start of new-end growth, since old-end growth slowed down in some cells at the RCP. cdc 11.123 is a mutant in which septation and division is blocked at 35 degrees C but nuclear division continues.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 108 (12) ◽  
pp. 3745-3756 ◽  
Author(s):  
K. Takegawa ◽  
D.B. DeWald ◽  
S.D. Emr

We have cloned the gene, vps34+, from the fission yeast Schizosaccharomyces pombe which encodes an 801 amino acid protein with phosphatidylinositol 3-kinase activity. The S. pombe Vps34 protein shares 43% amino acid sequence identity with the Saccharomyces cerevisiae Vps34 protein and 28% identity with the p110 catalytic subunit of the mammalian phosphatidylinositol 3-kinase. When the vps34+ gene is disrupted, S.pombe strains are temperature-sensitive for growth and the mutant cells contain enlarged vacuoles. Furthermore, while wild-type strains exhibit substantial levels of phosphatidylinositol 3-kinase activity, this activity is not detected in the vps34 delta strain. S.pombe Vps34p-specific antiserum detects a single protein in cells of -90 kDa that fractionates almost exclusively with the crude membrane fraction. Phosphatidylinositol 3-kinase activity also is localized mainly in the membrane fraction of wild-type cells. Immunoisolated Vps34p specifically phosphorylates phosphatidylinositol on the D-3 position of the inositol ring to yield phosphatidylinositol(3)phosphate. but does not utilize phosphatidylinositol(4)phosphate or phosphatidylinositol(4,5)bisphosphate as substrates. In addition, when compared to the mammalian p110 phosphatidylinositol 3-kinase, S. pombe Vps34p is relatively insensitive to the inhibitors wortmannin and LY294002. Together, these results indicate that S. pombe Vps34 is more similar to the phosphatidylinositol-specific 3-kinase, Vps34p from S. cerevisiae, and is distinct from the p110/p85 and G protein-coupled phosphatidylinositol 3-kinases from mammalian cells. These data are discussed in relation to the possible role of Vps34p in vesicle-mediated protein sorting to the S. pombe vacuole.


1982 ◽  
Vol 92 (1) ◽  
pp. 170-175 ◽  
Author(s):  
M R Kuchka ◽  
J W Jarvik

A mutant of Chlamydomonas reinhardtii with a variable number of flagella per cell has been used to investigate flagellar size control. The mutant and wild-type do not differ in cell size nor in flagellar length, yet the size of the intracellular pool of flagellar precursor protein can differ dramatically among individual mutant cells, with, for example, triflagellate cells having three times the pool of monoflagellate cells. Because cells of the same size, but with very different pool sizes, have flagella of identical length, it appears that the concentration of the unassembled flagellar precursor protein pool does not regulate flagellar length. The relation between cell size, pool size, and flagellar length has also been investigated for wild-type cells of different sizes and ploidies. Again, flagellar length appears to be maintained independent of pool size or concentration.


1998 ◽  
Vol 143 (3) ◽  
pp. 625-635 ◽  
Author(s):  
Sandra Fanchiotti ◽  
Fabiana Fernández ◽  
Cecilia D'Alessio ◽  
Armando J. Parodi

Interaction of monoglucosylated oligosaccharides with ER lectins (calnexin and/or calreticulin) facilitates glycoprotein folding but this interaction is not essential for cell viability under normal conditions. We obtained two distinct single Schizosaccharomyces pombe mutants deficient in either one of the two pathways leading to the formation of monoglucosylated oligosaccharides. The alg6 mutant does not glucosy- late lipid-linked oligosaccharides and transfers Man9GlcNAc2 to nascent polypeptide chains and the gpt1 mutant lacks UDP-Glc:glycoprotein glucosyltransferase (GT). Both single mutants grew normally at 28°C. On the other hand, gpt1/alg6 double-mutant cells grew very slowly and with a rounded morphology at 28°C and did not grow at 37°C. The wild-type phenotype was restored by transfection of the double mutant with a GT-encoding expression vector or by addition of 1 M sorbitol to the medium, indicating that the double mutant is affected in cell wall formation. It is suggested that facilitation of glycoprotein folding mediated by the interaction of monoglucosylated oligosaccharides with calnexin is essential for cell viability under conditions of extreme ER stress such as underglycosylation of proteins caused by the alg6 mutation and high temperature. In contrast, gls2/alg6 double-mutant cells that transfer Man9GlcNAc2 and that are unable to remove the glucose units added by GT as they lack glucosidase II (GII), grew at 37°C and had, when grown at 28°C, a phenotype of growth and morphology almost identical to that of wild-type cells. These results indicate that facilitation of glycoprotein folding mediated by the interaction of calnexin and monoglucosylated oligosaccharides does not necessarily require cycles of reglucosylation–deglucosylation catalyzed by GT and GII.


2006 ◽  
Vol 26 (5) ◽  
pp. 1691-1699 ◽  
Author(s):  
Karen Cerosaletti ◽  
Jocyndra Wright ◽  
Patrick Concannon

ABSTRACT The Atm protein kinase is central to the DNA double-strand break response in mammalian cells. After irradiation, dimeric Atm undergoes autophosphorylation at Ser 1981 and dissociates into active monomers. Atm activation is stimulated by expression of the Mre11/Rad50/nibrin complex. Previously, we showed that a C-terminal fragment of nibrin, containing binding sites for both Mre11 and Atm, was sufficient to provide this stimulatory effect in Nijmegen breakage syndrome (NBS) cells. To discriminate whether nibrin's role in Atm activation is to bind and translocate Mre11/Rad50 to the nucleus or to interact directly with Atm, we expressed an Mre11 transgene with a C-terminal NLS sequence in NBS fibroblasts. The Mre11-NLS protein complexed with Rad50, localized to the nucleus in NBS fibroblasts, and associated with chromatin. However, Atm autophosphorylation was not stimulated in cells expressing Mre11-NLS, nor were downstream Atm targets phosphorylated. To determine whether nibrin-Atm interaction is necessary to stimulate Atm activation, we expressed nibrin transgenes lacking the Atm binding domain in NBS fibroblasts. The nibrin ΔAtm protein interacted with Mre11/Rad50; however, Atm autophosphorylation was dramatically reduced after irradiation in NBS cells expressing the nibrin ΔAtm transgenes relative to wild-type nibrin. These results indicate that nibrin plays an active role in Atm activation beyond translocating Mre11/Rad50 to the nucleus and that this function requires nibrin-Atm interaction.


1988 ◽  
Vol 106 (4) ◽  
pp. 1171-1183 ◽  
Author(s):  
T Hirano ◽  
Y Hiraoka ◽  
M Yanagida

A temperature-sensitive mutant nuc2-663 of the fission yeast Schizosaccharomyces pombe specifically blocks mitotic spindle elongation at restrictive temperature so that nuclei in arrested cells contain a short uniform spindle (approximately 3-micron long), which runs through a metaphase plate-like structure consisting of three condensed chromosomes. In the wild-type or in the mutant cells at permissive temperature, the spindle is fully extended approximately 15-micron long in anaphase. The nuc2' gene was cloned in a 2.4-kb genomic DNA fragment by transformation, and its complete nucleotide sequence was determined. Its coding region predicts a 665-residues internally repeating protein (76.250 mol wt). By immunoblots using anti-sera raised against lacZ-nuc2+ fused proteins, a polypeptide (designated p67; 67,000 mol wt) encoded by nuc2+ is detected in the wild-type S. pombe extracts; the amount of p67 is greatly increased when multi-copy or high-expression plasmids carrying the nuc2+ gene are introduced into the S. pombe cells. Cellular fractionation and Percoll gradient centrifugation combined with immunoblotting show that p67 cofractionates with nuclei and is enriched in resistant structure that is insoluble in 2 M NaCl, 25 mM lithium 3,5'-diiodosalicylate, and 1% Triton but is soluble in 8 M urea. In nuc2 mutant cells, however, soluble p76, perhaps an unprocessed precursor, accumulates in addition to insoluble p67. The role of nuc2+ gene may be to interconnect nuclear and cytoskeletal functions in chromosome separation.


1996 ◽  
Vol 109 (1) ◽  
pp. 73-81 ◽  
Author(s):  
D.F. Muris ◽  
K. Vreeken ◽  
A.M. Carr ◽  
J.M. Murray ◽  
C. Smit ◽  
...  

The RAD54 gene of Saccharomyces cerevisiae encodes a putative helicase, which is involved in the recombinational repair of DNA damage. The RAD54 homologue of the fission yeast Schizosaccharomyces pombe, rhp54+, was isolated by using the RAD54 gene as a heterologous probe. The gene is predicted to encode a protein of 852 amino acids. The overall homology between the mutual proteins of the two species is 67% with 51% identical amino acids and 16% similar amino acids. A rhp54 deletion mutant is very sensitive to both ionizing radiation and UV. Fluorescence microscopy of the rhp54 mutant cells revealed that a large portion of the cells are elongated and occasionally contain aberrant nuclei. In addition, FACS analysis showed an increased DNA content in comparison with wild-type cells. Through a minichromosome-loss assay it was shown that the rhp54 deletion mutant has a very high level of chromosome loss. Furthermore, the rhp54 mutation in either a rad17 or a cdc2.3w mutant background (where the S-phase/mitosis checkpoint is absent) shows a significant reduction in viability. It is hypothesized that the rhp54+ gene is involved in the recombinational repair of UV and X-ray damage and plays a role in the processing of replication-specific lesions.


1988 ◽  
Vol 8 (11) ◽  
pp. 4675-4684
Author(s):  
F R Cross

The mating pheromone alpha-factor arrests Saccharomyces cerevisiae MATa cells in the G1 phase of the cell cycle. Size control is also exerted in G1, since cells do not exit G1 until they have attained a critical size. A dominant mutation (DAF1-1) which causes both alpha-factor resistance and small cell size (volume about 0.6-fold that of the wild type) has been isolated and characterized genetically and by molecular cloning. Several alpha-factor-induced mRNAs were induced equivalently in daf1+ and DAF1-1 cells. The DAF1-1 mutation consisted of a termination codon two-thirds of the way through the daf1+ coding sequence. A chromosomal deletion of DAF1 produced by gene transplacement increased cell volume about 1.5-fold; thus, DAF1-1 may be a hyperactive or deregulated allele of a nonessential gene involved in G1 size control. Multiple copies of DAF1-1 also greatly reduced the duration of the G1 phase of the cell cycle.


1992 ◽  
Vol 12 (4) ◽  
pp. 1405-1411
Author(s):  
J R Bischoff ◽  
D Casso ◽  
D Beach

Overexpression of wild-type p53 in mammalian cells blocks growth. We show here that the overexpression of wild-type human p53 in the fission yeast Schizosaccharomyces pombe also blocks growth, whereas the overexpression of mutant forms of p53 does not. The p53 polypeptide is located in the nucleus and is phosphorylated at both the cdc2 site and the casein kinase II site in S. pombe. A new dominant mutation of p53, resulting in the change of a cysteine to an arginine at amino acid residue 141, was identified. The results presented here demonstrate that S. pombe could provide a simple system for studying the mechanism of action of human p53.


Sign in / Sign up

Export Citation Format

Share Document