scholarly journals Heat shock protection against cold stress of Drosophila melanogaster

1988 ◽  
Vol 8 (8) ◽  
pp. 3550-3552
Author(s):  
V Burton ◽  
H K Mitchell ◽  
P Young ◽  
N S Petersen

Heat shock protein synthesis can be induced during recovery from cold treatment of Drosophila melanogaster larvae. Survival of larvae after a cold treatment is dramatically improved by a mild heat shock just before the cold shock. The conditions which induce tolerance to cold are similar to those which confer tolerance to heat.

1988 ◽  
Vol 8 (8) ◽  
pp. 3550-3552 ◽  
Author(s):  
V Burton ◽  
H K Mitchell ◽  
P Young ◽  
N S Petersen

Heat shock protein synthesis can be induced during recovery from cold treatment of Drosophila melanogaster larvae. Survival of larvae after a cold treatment is dramatically improved by a mild heat shock just before the cold shock. The conditions which induce tolerance to cold are similar to those which confer tolerance to heat.


2020 ◽  
Vol 223 (21) ◽  
pp. jeb219592
Author(s):  
Dina Malkeyeva ◽  
Elena Kiseleva ◽  
Svetlana Fedorova

ABSTRACTHsp67Bc in Drosophila melanogaster is a member of the small heat shock protein family, the main function of which is to prevent the aggregation of misfolded or damaged proteins. Hsp67Bc interacts with Starvin and Hsp23, which are known to be a part of the cold stress response in the fly during the recovery phase. In this study, we investigated the role of the Hsp67Bc gene in the cold stress response. We showed that in adult Drosophila, Hsp67Bc expression increases after cold stress and decreases after 1.5 h of recovery, indicating the involvement of Hsp67Bc in short-term stress recovery. We also implemented a deletion in the D. melanogaster Hsp67Bc gene using imprecise excision of a P-element, and analysed the cold tolerance of Hsp67Bc-null mutants at different developmental stages. We found that Hsp67Bc-null homozygous flies are viable and fertile but display varying cold stress tolerance throughout the stages of ontogenesis: the survival after cold stress is slightly impaired in late third instar larvae, unaffected in pupae, and notably affected in adult females. Moreover, the recovery from chill coma is delayed in Hsp67Bc-null adults of both sexes. In addition, the deletion in the Hsp67Bc gene caused more prominent up-regulation of Hsp70 following cold stress, suggesting the involvement of Hsp70 in compensation of the lack of the Hsp67Bc protein. Taken together, our results suggest that Hsp67Bc is involved in the recovery of flies from a comatose state and contributes to the protection of the fruit fly from cold stress.


2020 ◽  
Author(s):  
Karan Singh ◽  
Nagaraj Guru Prasad

AbstractEmpirical studies on the promiscuous species of Drosophila revealed that the laboratory evolution of resistance to a certain type of environmental stress can impact the ability of the organism to resist other kinds of stresses. The mechanisms of resistance to a particular stress are specialized and costly, then, mechanisms of resistance to other stresses can be negatively affected. However, it is also possible that at least a part of the stress resistance mechanisms is generic. With this premise we aimed to understand whether increased resistance to a cold stress can increase resistance to other types of stresses.To address this issue, we used populations of Drosophila melanogaster (D. melanogaster) that have been selected for 57-71 generations for increased resistance to cold shock (−5°C for one hour). We subjected the selected (FSB; selected for cold shock resistance, derived from BRB population) and control FCB; cold shock control, derived from BRB population) populations to a variety of environmental stresses such as cold shock, heat shock, starvation, desiccation and bacterial infection. We found that the compared to FCB populations, FSB populations had higher resistance to heat stress in terms of adult survivorship and mating ability post cold or heat shock. Desiccation resistance was observed higher in FSB females compared to FCB females but no such difference was found in males. We observed that FSB populations had lower starvation resistance relative to FCB populations. There was no difference between FSB and FCB populations in their ability to survive post bacterial infection. Our findings suggest that resistance to heat stress and desiccation (in females) are positively correlated with increased resistance to cold shock. However, resistance to starvation was negatively correlated with increased resistance to cold shock.


1989 ◽  
Vol 9 (1) ◽  
pp. 332-335 ◽  
Author(s):  
S E Kelly ◽  
I L Cartwright

Alterations in the pattern of DNase I hypersensitivity were observed on ecdysterone-stimulated transcription of Drosophila melanogaster small heat shock protein genes. Perturbations were induced near hsp27 and hsp22, coupled with an extensive domain of chromatin unfolding in the intergenic region between hsp23 and the developmentally regulated gene 1. These regions represent candidates for ecdysterone regulatory interactions.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Eugenia Bifeld ◽  
Stephan Lorenzen ◽  
Katharina Bartsch ◽  
Juan-José Vasquez ◽  
T. Nicolai Siegel ◽  
...  

ABSTRACT The 90-kDa heat shock protein (HSP90) of eukaryotes is a highly abundant and essential chaperone required for the maturation of regulatory and signal proteins. In the protozoan parasite Leishmania donovani, causative agent of the fatal visceral leishmaniasis, HSP90 activity is essential for cell proliferation and survival. Even more importantly, its inhibition causes life cycle progression from the insect stage to the pathogenic, mammalian stage. To unravel the molecular impact of HSP90 activity on the parasites’ gene expression, we performed a ribosome profiling analysis of L. donovani, comparing genome-wide protein synthesis patterns in the presence and absence of the HSP90-specific inhibitor radicicol and an ectopically expressed radicicol-resistant HSP90 variant. We find that ribosome-protected RNA faithfully maps open reading frames and represents 97% of the annotated protein-coding genes of L. donovani. Protein synthesis was found to correlate poorly with RNA steady-state levels, indicating a regulated translation as primary mechanism for HSP90-dependent gene expression. The results confirm inhibitory effects of HSP90 on the synthesis of Leishmania proteins that are associated with the pathogenic, intracellular stage of the parasite. Those include heat shock proteins, redox enzymes, virulence-enhancing surface proteins, proteolytic pathways, and a complete set of histones. Conversely, HSP90 promotes fatty acid synthesis enzymes. Complementing radicicol treatment with the radicicol-resistant HSP90rr variant revealed important off-target radicicol effects that control a large number of the above-listed proteins. Leishmania lacks gene-specific transcription regulation and relies on regulated translation instead. Our ribosome footprinting analysis demonstrates a controlling function of HSP90 in stage-specific protein synthesis but also significant, HSP90-independent effects of the inhibitor radicicol. IMPORTANCE Leishmania parasites cause severe illness in humans and animals. They exist in two developmental stages, insect form and mammalian form, which differ in shape and gene expression. By mapping and quantifying RNA fragments protected by protein synthesis complexes, we determined the rates of protein synthesis for >90% of all Leishmania proteins in response to the inhibition of a key regulatory protein, the 90-kDa heat shock protein. We find that Leishmania depends on a regulation of protein synthesis for controlling its gene expression and that heat shock protein 90 inhibition can trigger the developmental program from insect form to mammalian form of the pathogen.


1986 ◽  
Vol 83 (22) ◽  
pp. 8713-8717 ◽  
Author(s):  
A. E. Bianco ◽  
J. M. Favaloro ◽  
T. R. Burkot ◽  
J. G. Culvenor ◽  
P. E. Crewther ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document