Identification of a 150-kilodalton polypeptide that copurifies with yeast TFIIIC and binds specifically to tRNA genes

1989 ◽  
Vol 9 (5) ◽  
pp. 2018-2024
Author(s):  
D L Johnson ◽  
S L Wilson

The transcription in vitro of eucaryotic tRNA genes by RNA polymerase III requires two transcription factors, designated TFIIIB and TFIIIC. One of the critical functions of TFIIIC in the transcription of tRNA genes is that it interacts directly and specifically with the two internal promoter elements of these genes. We have partially purified Saccharomyces cerevisiae TFIIIC by chromatography on Bio-Rex 70, DEAE-cellulose, and phosphocellulose resins. A 150-kilodalton (kDa) DNA-binding polypeptide copurified with TFIIIC activity. This 150-kDa protein coeluted with the DNA-binding activity of TFIIIC after rechromatography of TFIIIC on phosphocellulose and its elution with a linear salt gradient. The stable and high-affinity interaction of this protein with tRNA genes was demonstrated by the maintenance of a protein-DNA complex under conditions of high ionic strength. Finally, we showed by two criteria that the interaction of this protein with tRNA genes was specific. First, the protein-DNA complex was competed with only by DNA-containing tRNA genes; second, the protein preferentially bound to DNA fragments containing a tRNA gene. These results strongly suggest that the DNA-binding domain of the yeast TFIIIC is contained within this 150-kDa polypeptide.

1989 ◽  
Vol 9 (5) ◽  
pp. 2018-2024 ◽  
Author(s):  
D L Johnson ◽  
S L Wilson

The transcription in vitro of eucaryotic tRNA genes by RNA polymerase III requires two transcription factors, designated TFIIIB and TFIIIC. One of the critical functions of TFIIIC in the transcription of tRNA genes is that it interacts directly and specifically with the two internal promoter elements of these genes. We have partially purified Saccharomyces cerevisiae TFIIIC by chromatography on Bio-Rex 70, DEAE-cellulose, and phosphocellulose resins. A 150-kilodalton (kDa) DNA-binding polypeptide copurified with TFIIIC activity. This 150-kDa protein coeluted with the DNA-binding activity of TFIIIC after rechromatography of TFIIIC on phosphocellulose and its elution with a linear salt gradient. The stable and high-affinity interaction of this protein with tRNA genes was demonstrated by the maintenance of a protein-DNA complex under conditions of high ionic strength. Finally, we showed by two criteria that the interaction of this protein with tRNA genes was specific. First, the protein-DNA complex was competed with only by DNA-containing tRNA genes; second, the protein preferentially bound to DNA fragments containing a tRNA gene. These results strongly suggest that the DNA-binding domain of the yeast TFIIIC is contained within this 150-kDa polypeptide.


1999 ◽  
Vol 19 (12) ◽  
pp. 8113-8122 ◽  
Author(s):  
Tatsuya M. Ikeda ◽  
Michael W. Gray

ABSTRACT To investigate the transcriptional apparatus in wheat mitochondria, mitochondrial extracts were subjected to column chromatography and protein fractions were analyzed by in vitro transcription and mobility shift assays. Fractions eluting from DEAE-Sephacel between 0.2 and 0.3 M KCl displayed DNA-binding activity and supported specific transcription initiated from a wheat cox2 promoter. The active DEAE-Sephacel pool was further resolved by chromatography on phosphocellulose. Fractions that exhibited DNA-binding activity and that stimulated both specific and nonspecific transcription in vitro were highly enriched in a 63-kDa protein (p63). From peptide sequence obtained from purified p63, a cDNA encoding the protein was assembled. The predicted amino acid sequence (612 amino acid residues, 69 kDa) contains a basic N-terminal targeting sequence expected to direct transport of the protein into mitochondria. The p63 sequence also features an acidic domain characteristic of transcriptional activation factors, as well as sequence blocks displaying limited similarity to positionally equivalent regions in sigma factors from eubacteria related to mitochondria. Recombinant p63 possesses DNA-binding activity, exhibiting an affinity for the core cox2 promoter element and upstream regions in gel shift assays and having the ability to enhance specific transcription in vitro. Transcripts encoding p63 are expressed at an early stage in the germination of isolated wheat embryos, in a temporal pattern parallelling that of newly synthesized precursors of cox2, a mitochondrial gene. Taken together, these data suggest a role for p63 in transcription in wheat mitochondria.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1056-1067 ◽  
Author(s):  
Mira T. Kassouf ◽  
Hedia Chagraoui ◽  
Paresh Vyas ◽  
Catherine Porcher

Abstract Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding–independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.


1991 ◽  
Vol 11 (3) ◽  
pp. 1547-1552
Author(s):  
D Leshkowitz ◽  
M D Walker

Insulin-producing cells and fibroblasts were fused to produce hybrid lines. In hybrids derived from both hamster and rat insulinoma cells, no insulin mRNA could be detected in any of seven lines examined by Northern (RNA) analysis despite the presence in each line of the insulin genes of both parental cells. Hybrid cells were transfected with recombinant chloramphenicol acetyltransferase plasmids containing defined segments of the rat insulin I gene 5' flank. We observed no transcriptional activity of the intact insulin enhancer or of IEB2, a critical cis-acting element of the insulin enhancer. IEB2 has previously been shown to interact in vitro with IEF1, a DNA-binding activity observed selectively in insulin-producing cells. Hybrid cells showed no detectable IEF1 activity. Furthermore, the insulin enhancer was unable to reduce transcription directed by the Moloney sarcoma virus enhancer in a double-enhancer construct. Thus, extinction of insulin gene expression in the hybrids apparently does not operate through a direct action of repressors on the insulin enhancer; rather, extinction is accompanied by, and may be caused by, reduced DNA-binding activity of the putative transcriptional activator IEF1.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 245-255 ◽  
Author(s):  
M. Van Doren ◽  
H.M. Ellis ◽  
J.W. Posakony

In Drosophila, a group of regulatory proteins of the helix-loop-helix (HLH) class play an essential role in conferring upon cells in the developing adult epidermis the competence to give rise to sensory organs. Proteins encoded by the daughterless (da) gene and three genes of the achaete-scute complex (AS-C) act positively in the determination of the sensory organ precursor cell fate, while the extramacrochaetae (emc) and hairy (h) gene products act as negative regulators. In the region upstream of the achaete gene of the AS-C, we have identified three ‘E box’ consensus sequences that are bound specifically in vitro by hetero-oligomeric complexes consisting of the da protein and an AS-C protein. We have used this DNA-binding activity to investigate the biochemical basis of the negative regulatory function of emc. Under the conditions of our experiments, the emc protein, but not the h protein, is able to antagonize specifically the in vitro DNA-binding activity of da/AS-C and putative da/da protein complexes. We interpret these results as follows: the heterodimerization capacity of the emc protein (conferred by its HLH domain) allows it to act in vivo as a competitive inhibitor of the formation of functional DNA-binding protein complexes by the da and AS-C proteins, thereby reducing the effective level of their transcriptional regulatory activity within the cell.


Author(s):  
Yanisa Laoong-u-thai ◽  
Warapond Wanna ◽  
Autaipohn Kaikaew

Shrimp farming is an important business in Thailand and worldwide. The study of molecular biology and biochemical pathway of the key molecules controlling muscle growth is an essential to improve shrimp livestock. Profilin is a pivotal protein in muscle formation, especially actin protein. Its nuclear function has been reported in many species for gene regulation. Here in this work, we characterized the function of LvProfilin, a marine shrimp profilin from Litopenaeus vannamei, both in silico and in vitro. The phylogenetic tree of LvProfilin among organisms and its 3D protein structure showed that LvProfilin was highly conserved among shrimp and arthropods. The homology modeling of its 3D structure revealed 3 alpha-helices and 6 beta-strands similar to most eukaryotic profilins. To interpret its possible function, the gene expression of LvProfilin in various tissues was performed. We found that this gene was expressed in various tissues. This result may imply that LvProfilin could share a common function in all tissues. Nuclear activity has been a promising function of LvProfilin. We performed a DNA/RNA binding prediction analysis using DRNApred. The result indicated that Lysine-90 and Threonine-91 were the putative DNA-binding sites with the probability of 63.12% and 54.16%, respectively. Its binding activity was confirmed in vitro which bound stronger to single strand DNA than double strand DNA. To our best knowledge, this is the first report of DNA binding activity of profilin in invertebrates.


1989 ◽  
Vol 9 (6) ◽  
pp. 2464-2476
Author(s):  
M Cockell ◽  
B J Stevenson ◽  
M Strubin ◽  
O Hagenbüchle ◽  
P K Wellauer

Footprint analysis of the 5'-flanking regions of the alpha-amylase 2, elastase 2, and trypsina genes, which are expressed in the acinar pancreas, showed multiple sites of protein-DNA interaction for each gene. Competition experiments demonstrated that a region from each 5'-flanking region interacted with the same cell-specific DNA-binding activity. We show by in vitro binding assays that this DNA-binding activity also recognizes a sequence within the 5'-flanking regions of elastase 1, chymotrypsinogen B, carboxypeptidase A, and trypsind genes. Methylation interference and protection studies showed that the DNA-binding activity recognized a bipartite motif, the subelements of which were separated by integral helical turns of DNA. The alpha-amylase 2 cognate sequence was found to enhance in vivo transcription of its own promoter in a cell-specific manner, which identified the DNA-binding activity as a transcription factor (PTF 1). The observation that PTF 1 bound to DNA sequences that have been defined as transcriptional enhancers by others suggests that this factor is involved in the coordinate expression of genes transcribed in the acinar pancreas.


1992 ◽  
Vol 12 (9) ◽  
pp. 4104-4111
Author(s):  
L Sistonen ◽  
K D Sarge ◽  
B Phillips ◽  
K Abravaya ◽  
R I Morimoto

Hemin induces nonterminal differentiation of human K562 erythroleukemia cells, which is accompanied by the expression of certain erythroid cell-specific genes, such as the embryonic and fetal globins, and elevated expression of the stress genes hsp70, hsp90, and grp78/BiP. Previous studies revealed that, as during heat shock, transcriptional induction of hsp70 in hemin-treated cells is mediated by activation of heat shock transcription factor (HSF), which binds to the heat shock element (HSE). We report here that hemin activates the DNA-binding activity of HSF2, whereas heat shock induces predominantly the DNA-binding activity of a distinct factor, HSF1. This constitutes the first example of HSF2 activation in vivo. Both hemin and heat shock treatments resulted in equivalent levels of HSF-HSE complexes as analyzed in vitro by gel mobility shift assay, yet transcription of the hsp70 gene was stimulated much less by hemin-induced HSF than by heat shock-induced HSF. Genomic footprinting experiments revealed that hemin-induced HSF and heat shock-induced HSF, HSF2, and HSF1, respectively, occupy the HSE of the human hsp70 promoter in a similar yet not identical manner. We speculate that the difference in occupancy and/or in the transcriptional abilities of HSF1 and HSF2 accounts for the observed differences in the stimulation of hsp70 gene transcription.


Sign in / Sign up

Export Citation Format

Share Document