Cell size modulation by CDC25 and RAS2 genes in Saccharomyces cerevisiae

1989 ◽  
Vol 9 (6) ◽  
pp. 2715-2723
Author(s):  
M D Baroni ◽  
E Martegani ◽  
P Monti ◽  
L Alberghina

A detailed kinetic analysis of the cell cycle of cdc25-1, RAS2Val-19, or cdc25-1/RAS2Val-19 mutants during exponential growth is presented. At the permissive temperature (24 degrees C), cdc25-1 cells show a longer G1/unbudded phase of the cell cycle and have a smaller critical cell size required for budding without changing the growth rate in comparison to an isogenic wild type. The RAS2Val-19 mutation efficiently suppresses the ts growth defect of the cdc25-1 mutant at 36 degrees C and the increase of G1 phase at 24 degrees C. Moreover, it causes a marked increase of the critical cell mass required to enter into a new cell division cycle compared with that of the wild type. Since the critical cell mass is physiologically modulated by nutritional conditions, we have also studied the behavior of these mutants in different media. The increase in cell size caused by the RAS2Val-19 mutation is evident in all tested growth conditions, while the effect of cdc25-1 is apparently more pronounced in rich culture media. CDC25 and RAS2 gene products have been showed to control cell growth by regulating the cyclic AMP metabolic pathway. Experimental evidence reported herein suggests that the modulation of the critical cell size by CDC25 and RAS2 may involve adenylate cyclase.

1989 ◽  
Vol 9 (6) ◽  
pp. 2715-2723 ◽  
Author(s):  
M D Baroni ◽  
E Martegani ◽  
P Monti ◽  
L Alberghina

A detailed kinetic analysis of the cell cycle of cdc25-1, RAS2Val-19, or cdc25-1/RAS2Val-19 mutants during exponential growth is presented. At the permissive temperature (24 degrees C), cdc25-1 cells show a longer G1/unbudded phase of the cell cycle and have a smaller critical cell size required for budding without changing the growth rate in comparison to an isogenic wild type. The RAS2Val-19 mutation efficiently suppresses the ts growth defect of the cdc25-1 mutant at 36 degrees C and the increase of G1 phase at 24 degrees C. Moreover, it causes a marked increase of the critical cell mass required to enter into a new cell division cycle compared with that of the wild type. Since the critical cell mass is physiologically modulated by nutritional conditions, we have also studied the behavior of these mutants in different media. The increase in cell size caused by the RAS2Val-19 mutation is evident in all tested growth conditions, while the effect of cdc25-1 is apparently more pronounced in rich culture media. CDC25 and RAS2 gene products have been showed to control cell growth by regulating the cyclic AMP metabolic pathway. Experimental evidence reported herein suggests that the modulation of the critical cell size by CDC25 and RAS2 may involve adenylate cyclase.


1982 ◽  
Vol 57 (1) ◽  
pp. 315-329
Author(s):  
C.D. Rasmussen ◽  
J.D. Berger

Two temperature-sensitive cell-cycle mutants were used to generate abnormally large cells (size estimated by protein content) with either normal or increased DNA contents. The first mutant, cc1, blocks DNA synthesis, but allows cell growth at the restrictive temperature. The cells do not progress through the cell cycle while at the restrictive temperature, but do recover and complete the cell cycle when returned to permissive conditions. The progeny have increased cell size and normal DNA content. Downward regulation of cell size occurs during the ensuing cell cycle at permissive temperature. Two processes are involved. First, the G1 period is reduced or eliminated. As initial cell size increases there is a progressive shortening of the cell cycle to 75% of normal. This limit cell-cycle duration is reached when the initial mass of the cell is equal to or greater than that of normal cells at the time of DNA synthesis initiation (0.25 of a cell cycle). Cells with the limit cell cycle begin macronuclear DNA synthesis immediately after fission. The durations of the S period and fission are normal. Second, the rate of cell growth is unaffected by the increase in cell size, and results in the partitioning of excess cell mass between the daughter cells at the next fission. The second mutant, cc2, blocks cell division, but allows DNA synthesis to occur at a reduced rate so that cells with up to about 140% of the normal initial DNA content and twice the normal cell mass can be produced. The pattern of cell-cycle shortening is the same as in ccl. The rates of growth and both the rate and amount of DNA synthesis are proportional to the initial DNA content. This suggests that the rates of growth and DNA synthesis are limited by the transcriptional activity of the macronucleus in both cc1 and cc2 cells when they begin the cell cycle with experimentally increased cell mass. Increases in both cell size and initial DNA content are required to bring about increases in the rates of growth and DNA accumulation.


1979 ◽  
Vol 35 (1) ◽  
pp. 25-40
Author(s):  
R.S. Fraser ◽  
P. Nurse

In the fission yeast Schizosaccharomyces pombe, a series of diploid mutants divides at smaller cell sizes than wild type. In these smaller strains, the mean gene concentration (defined by previous authors as the DNA to protein ratio) is higher than in wild type. Such an increase in gene concentration should also increase the concentration of those components such as messenger and ribosomal RNA, whose rate of synthesis is determined by gene dosage. We show that the mean concentrations of these 2 RNA species in the small cells are not increased, but are the same as in wild type. The small mutant cells are thus able to compensate for changes in gene concentration. This compensation is shown to operate through differences in the patterns of synthesis of RNA during the cell cycle. In all the strains of the diploid series, the rates of synthesis of messenger and ribosomal RNA double as steps once in each cell cycle. The timings of the steps in the cell cycle appear to be cell-size related, since the smaller the cell at division, the later are the steps in the cell cycle. In contrast, there is comparatively little variation in the timing of DNA replication in the cycles of cells of different sizes. We propose that after DNA replication, there is a delay before doubling in the rate of transcription. Such a cell mass-related delay is all that is required to compensate for increased gene concentration, and results in the same mean functional DNA concentration in all strains. This mechanism will maintain the same mean messenger and ribosomal RNA concentrations in cells dividing at different sizes. Ways in which the cell size-related control over transcription may operate are discussed.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 45-56
Author(s):  
Luther Davis ◽  
JoAnne Engebrecht

Abstract The DOM34 gene of Saccharomyces cerevisiae is similar togenes found in diverse eukaryotes and archaebacteria. Analysis of dom34 strains shows that progression through the G1 phase of the cell cycle is delayed, mutant cells enter meiosis aberrantly, and their ability to form pseudohyphae is significantly diminished. RPS30A, which encodes ribosomal protein S30, was identified in a screen for high-copy suppressors of the dom34Δ growth defect. dom34Δ mutants display an altered polyribosome profile that is rescued by expression of RPS30A. Taken together, these data indicate that Dom34p functions in protein translation to promote G1 progression and differentiation. A Drosophila homolog of Dom34p, pelota, is required for the proper coordination of meiosis and spermatogenesis. Heterologous expression of pelota in dom34Δ mutants restores wild-type growth and differentiation, suggesting conservation of function between the eukaryotic members of the gene family.


2014 ◽  
Vol 204 (3) ◽  
pp. 359-376 ◽  
Author(s):  
Jessica Zapata ◽  
Noah Dephoure ◽  
Tracy MacDonough ◽  
Yaxin Yu ◽  
Emily J. Parnell ◽  
...  

Cell size checkpoints ensure that passage through G1 and mitosis occurs only when sufficient growth has occurred. The mechanisms by which these checkpoints work are largely unknown. PP2A associated with the Rts1 regulatory subunit (PP2ARts1) is required for cell size control in budding yeast, but the relevant targets are unknown. In this paper, we used quantitative proteome-wide mass spectrometry to identify proteins controlled by PP2ARts1. This revealed that PP2ARts1 controls the two key checkpoint pathways thought to regulate the cell cycle in response to cell growth. To investigate the role of PP2ARts1 in these pathways, we focused on the Ace2 transcription factor, which is thought to delay cell cycle entry by repressing transcription of the G1 cyclin CLN3. Diverse experiments suggest that PP2ARts1 promotes cell cycle entry by inhibiting the repressor functions of Ace2. We hypothesize that control of Ace2 by PP2ARts1 plays a role in mechanisms that link G1 cyclin accumulation to cell growth.


2018 ◽  
Author(s):  
Nairita Maitra ◽  
Jayamani Anandhakumar ◽  
Heidi M. Blank ◽  
Craig D. Kaplan ◽  
Michael Polymenis

ABSTRACTThe question of what determines whether cells are big or small has been the focus of many studies because it is thought that such determinants underpin the coupling of cell growth with cell division. In contrast, what determines the overall pattern of how cell size is distributed within a population of wild type or mutant cells has received little attention. Knowing how cell size varies around a characteristic pattern could shed light on the processes that generate such a pattern and provide a criterion to identify its genetic basis. Here, we show that cell size values of wild type Saccharomyces cerevisiae cells fit a gamma distribution, in haploid and diploid cells, and under different growth conditions. To identify genes that influence this pattern, we analyzed the cell size distributions of all single-gene deletion strains in Saccharomyces cerevisiae. We found that yeast strains which deviate the most from the gamma distribution are enriched for those lacking gene products functioning in gene expression, especially those in transcription or transcription-linked processes. We also show that cell size is increased in mutants carrying altered activity substitutions in Rpo21p/Rpb1, the largest subunit of RNA polymerase II (Pol II). Lastly, the size distribution of cells carrying extreme altered activity Pol II substitutions deviated from the expected gamma distribution. Our results are consistent with the idea that genetic defects in widely acting transcription factors or Pol II itself compromise both cell size homeostasis and how the size of individual cells is distributed in a population.


2020 ◽  
Author(s):  
Qing Zhang ◽  
Zhichao Zhang ◽  
Hualin Shi

Sixty years ago, bacterial cell size was found as an exponential function of growth rate. Fifty years ago, a more general relationship was proposed, in which the cell mass was equal to the initiation mass multiplied by the ratio of the total time of the C and D periods to the doubling time. This relationship has recently been experimentally confirmed by perturbing doubling time, C period, D period or the initiation mass. However, the underlying molecular mechanism remains unclear. Here, we developed a mechanistic and kinetic model to describe how the initiator protein DnaA mediates the initiation of DNA replication in E. coli. In the model, we introduced an initiation probability function involving competitive binding of DnaA-ATP (active) and DnaA-ADP (inactive) at replication origin to determine the initiation of replication. In addition, we considered RNAP availability, ppGpp inhibition, DnaA autorepression, DnaA titration by chromosomal sites, hydrolysis of DnaA-ATP along with DNA replication, reactivation of DnaA-ADP and established a kinetic description of these DnaA regulatory processes. We simulated DnaA kinetics and obtained a self-consistent cell size and a regular DnaA oscillation coordinated with the cell cycle at steady state. The relationship between the cell size obtained by the simulation and the growth rate, C period, D period or initiation mass reproduces the results of the experiment. This model also predicts how the number of DnaA and the initiation mass vary with the perturbation parameters (including those reflecting the mutation or interference of DnaA regulatory processes), which is comparable to experimental data. The results suggest that the regulatory mechanisms of DnaA level and activity are associated with the invariance of initiation mass and the cell size general relationship for matching frequencies of replication initiation and cell division. This study may provide clues for concerted control of cell size and cell cycle in synthetic biology.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 852-852
Author(s):  
Daniel Hidalgo ◽  
Jacob Bejder ◽  
Ramona Pop ◽  
Kyle Gellatly ◽  
Yung Hwang ◽  
...  

Abstract Erythroid terminal differentiation (ETD) entails cell divisions coupled to decreasing cell size. The tight link between the number of cell divisions and red cell size is apparent in nutritional deficiencies or genetic variants in which fewer cycles result in larger red cells. Here we investigated novel EpoR functions, finding that EpoR signaling disrupts the relationship between cell cycle number and cell size, simultaneously promoting rapid cycling and the formation of larger red cells. EpoR is essential for erythroblast survival, but it is unclear whether it has other non-redundant functions. To address this, we developed a genetic system in which we rescue mouse Epor -/- fetal liver progenitors from apoptosis by transduction with the anti-apoptotic protein Bcl-x L, and compare their ensuing differentiation with that of Epor -/- progenitors rescued with EpoR (Fig 1a). We found that the Bcl-x L survival signal, in the absence EpoR, supported formation of enucleated red cells. However, key ETD features were abnormal. First, Bcl-x L-transduced Epor -/- erythroblasts underwent slower and fewer cell cycles (Figure 1b), differentiating prematurely into enucleated red cells. Premature induction of the cyclin-dependent-kinase inhibitor p27 KIP1 was in part responsible for the fewer cycles in the absence of EpoR signaling. We confirmed that EpoR also stimulates rapid cycling in wild-type erythroblasts in vivo, using a mouse transgenic for a live-cell reporter of cell cycle speed. Second, using imaging flow cytometry, we found that Bcl-x L-transduced Epor -/- erythroblasts were smaller than EpoR-transduced Epor -/- cells (Fig 1c,d). By doubly transducing Epor -/- erythroblasts with both Bcl-x L and EpoR, we verified that EpoR absence, and not Bcl-x L overexpression, is responsible for the smaller size of Bcl-x L-transduced Epor -/- erythroblasts and reticulocytes. Bcl-x L-transduced Epor -/- erythroblasts failed to upregulate the transferrin receptor, suggesting that iron deficiency may be responsible for their smaller size. However, neither iron supplementation, nor transduction with the transferrin receptor, rescued their smaller size. Iron regulates cell size through Heme-regulated eIF2α kinase (HRI). To definitively test the role of iron and HRI, we generated mice doubly deleted for both EpoR and HRI. We then rescued both Epor -/- and Epor -/-Hri -/- -fetal liver cells in parallel, by transduction with either Bcl-x L or EpoR. In agreement with the known role of HRI as a negative regulator of erythroblast size, both Bcl-x L- transduced and EpoR-transduced erythroblasts were larger on the Epor -/-Hri -/- genetic background. However, the difference in size between Bcl-x L and EpoR-rescued erythroblasts persisted in Epor -/-Hri -/- erythroblasts and reticulocytes (Fig 1c,d), conclusively showing that EpoR signaling regulates cell size independently of the HRI pathway. EpoR promoted increased erythroblast and reticulocyte cell size in wild-type mice in vitro and in vivo, in response to Epo concentrations ranging from 10 to 10,000 mU/ml. We also evaluated the effect of Epo on red cell size in humans, in two independent studies, where healthy volunteers were administered Epo for either 3 weeks (20 IU /kg every 48 hours, 25 subjects, Study #1) or for 7 weeks (weekly Epo dosing that increased hemoglobin by 10 -15%; 24 subjects, Study #2). In a third intervention, 21 subjects participated in a randomized double-blind placebo-controlled crossover study in which 900 ml of whole blood was withdrawn from the treatment group by venipuncture. In all three studies, the increase in MCV in the treatment groups persisted long after Epo and reticulocyte levels returned to baseline (Figure 2). There was no correlation between MCV and the reticulocyte count, whose time courses were clearly divergent (r < 0.1, Pearson's product-moment correlation). Further, computational simulation suggests that the extent and duration of the increase in MCV is unlikely to be the result of skewing of the circulating red cell population in favor of younger, larger red cells. Our work reveals a paradoxical EpoR-driven increase in erythroblast cycling simultaneously with increased erythroblast and red cell size. It suggests that EpoR alters the relationship between cell cycle and biomass in erythroblasts. It further suggests that hypoxia, anemia and other high-Epo syndromes are new diagnostic interpretations of increased MCV in the clinic. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 117 (25) ◽  
pp. 14243-14250 ◽  
Author(s):  
Felix Barber ◽  
Ariel Amir ◽  
Andrew W. Murray

Cells must couple cell-cycle progress to their growth rate to restrict the spread of cell sizes present throughout a population. Linear, rather than exponential, accumulation of Whi5, was proposed to provide this coordination by causing a higher Whi5 concentration in cells born at a smaller size. We tested this model using the inducibleGAL1promoter to make the Whi5 concentration independent of cell size. At an expression level that equalizes the mean cell size with that of wild-type cells, the size distributions of cells with galactose-induced Whi5 expression and wild-type cells are indistinguishable. Fluorescence microscopy confirms that the endogenous andGAL1promoters produce different relationships between Whi5 concentration and cell volume without diminishing size control in the G1 phase. We also expressed Cln3 from the GAL1 promoter, finding that the spread in cell sizes for an asynchronous population is unaffected by this perturbation. Our findings indicate that size control in budding yeast does not fundamentally originate from the linear accumulation of Whi5, contradicting a previous claim and demonstrating the need for further models of cell-cycle regulation to explain how cell size controls passage through Start.


1983 ◽  
Vol 3 (5) ◽  
pp. 922-930
Author(s):  
R L Roberts ◽  
B Bowers ◽  
M L Slater ◽  
E Cabib

Growth of Saccharomyces cerevisiae cell cycle mutants cdc3, cdc4, cdc7, cdc24, and cdc28 at a nonpermissive temperature (37 degrees C) resulted in increased accumulation of chitin relative to other cell wall components, as compared with that observed at a permissive temperature (25 degrees C). Wild-type cells showed the same chitin/carbohydrate ratio at both temperatures, whereas mutants cdc13 and cdc21 yielded only a small increase in the ratio at 37 degrees C. These results confirm and extend those reported by B. F. Sloat and J. R. Pringle (Science 200:1171-1173, 1978) for mutant cdc24. The distribution of chitin in the cell wall was studied by electron microscopy, by specific staining with wheat germ agglutinin-colloidal gold complexes. At the permissive temperature, chitin was restricted to the septal region in all strains, whereas at 37 degrees C a generalized distribution of chitin in the cell wall was observed in all mutants. These results do not support a unique interdependence between the product of the cdc24 gene and localization of chitin deposition; they suggest that unbalanced conditions created in the cell by arresting the cycle at different stages result in generalized activation of the chitin synthetase zymogen. Thus, blockage of an event in the cell cycle may lead to consequences that are not functionally related to that event under normal conditions.


Sign in / Sign up

Export Citation Format

Share Document