scholarly journals Biosynthesis of Ether-Type Polar Lipids in Archaea and Evolutionary Considerations

2007 ◽  
Vol 71 (1) ◽  
pp. 97-120 ◽  
Author(s):  
Yosuke Koga ◽  
Hiroyuki Morii

SUMMARY This review deals with the in vitro biosynthesis of the characteristics of polar lipids in archaea along with preceding in vivo studies. Isoprenoid chains are synthesized through the classical mevalonate pathway, as in eucarya, with minor modifications in some archaeal species. Most enzymes involved in the pathway have been identified enzymatically and/or genomically. Three of the relevant enzymes are found in enzyme families different from the known enzymes. The order of reactions in the phospholipid synthesis pathway (glycerophosphate backbone formation, linking of glycerophosphate with two radyl chains, activation by CDP, and attachment of common polar head groups) is analogous to that of bacteria. sn-Glycerol-1-phosphate dehydrogenase is responsible for the formation of the sn-glycerol-1-phosphate backbone of phospholipids in all archaea. After the formation of two ether bonds, CDP-archaeol acts as a common precursor of various archaeal phospholipid syntheses. Various phospholipid-synthesizing enzymes from archaea and bacteria belong to the same large CDP-alcohol phosphatidyltransferase family. In short, the first halves of the phospholipid synthesis pathways play a role in synthesis of the characteristic structures of archaeal and bacterial phospholipids, respectively. In the second halves of the pathways, the polar head group-attaching reactions and enzymes are homologous in both domains. These are regarded as revealing the hybrid nature of phospholipid biosynthesis. Precells proposed by Wächtershäuser are differentiated into archaea and bacteria by spontaneous segregation of enantiomeric phospholipid membranes (with sn-glycerol-1-phosphate and sn-glycerol-3-phosphate backbones) and the fusion and fission of precells. Considering the nature of the phospholipid synthesis pathways, we here propose that common phospholipid polar head groups were present in precells before the differentiation into archaea and bacteria.

2007 ◽  
Vol 292 (4) ◽  
pp. L924-L935 ◽  
Author(s):  
Anna A. Birukova ◽  
Panfeng Fu ◽  
Santipongse Chatchavalvanich ◽  
Dylan Burdette ◽  
Olga Oskolkova ◽  
...  

We have previously described protective effects of oxidized 1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphocholine (OxPAPC) on pulmonary endothelial cell (EC) barrier function and demonstrated the critical role of cyclopentenone-containing modifications of arachidonoyl moiety in OxPAPC protective effects. In this study we used oxidized phosphocholine (OxPAPC), phosphoserine (OxPAPS), and glycerophosphate (OxPAPA) to investigate the role of polar head groups in EC barrier-protective responses to oxidized phospholipids (OxPLs). OxPAPC and OxPAPS induced sustained barrier enhancement in pulmonary EC, whereas OxPAPA caused a transient protective response as judged by measurements of transendothelial electrical resistance (TER). Non-OxPLs showed no effects on TER levels. All three OxPLs caused enhancement of peripheral EC actin cytoskeleton. OxPAPC and OxPAPS completely abolished LPS-induced EC hyperpermeability in vitro, whereas OxPAPA showed only a partial protective effect. In vivo, intravenous injection of OxPAPS or OxPAPC (1.5 mg/kg) markedly attenuated increases in the protein content, cell counts, and myeloperoxidase activities detected in bronchoalveolar lavage fluid upon intratracheal LPS instillation in mice, although OxPAPC showed less potency. All three OxPLs partially attenuated EC barrier dysfunction induced by IL-6 and thrombin. Their protective effects against thrombin-induced EC barrier dysfunction were linked to the attenuation of the thrombin-induced Rho pathway of EC hyperpermeability and stimulation of Rac-mediated mechanisms of EC barrier recovery. These results demonstrate for the first time the essential role of polar OxPL groups in blunting the LPS-induced EC dysfunction in vitro and in vivo and suggest the mechanism of agonist-induced hyperpermeability attenuation by OxPLs via reduction of Rho and stimulation of Rac signaling.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7507
Author(s):  
Montassar Khalil ◽  
Alexis Hocquigny ◽  
Mathieu Berchel ◽  
Tristan Montier ◽  
Paul-Alain Jaffrès

A convergent synthesis of cationic amphiphilic compounds is reported here with the use of the phosphonodithioester–amine coupling (PAC) reaction. This versatile reaction occurs at room temperature without any catalyst, allowing binding of the lipid moiety to a polar head group. This strategy is illustrated with the use of two lipid units featuring either two oleyl chains or two-branched saturated lipid chains. The final cationic amphiphiles were evaluated as carriers for plasmid DNA delivery in four cell lines (A549, Calu3, CFBE and 16HBE) and were compared to standards (BSV36 and KLN47). These new amphiphilic derivatives, which were formulated with DOPE or DOPE-cholesterol as helper lipids, feature high transfection efficacies when associated with DOPE. The highest transfection efficacies were observed in the four cell lines at low charge ratios (CR = 0.7, 1 or 2). At these CRs, no toxic effects were detected. Altogether, this new synthesis scheme using the PAC reaction opens up new possibilities for investigating the effects of lipid or polar head groups on transfection efficacies.


2015 ◽  
Vol 13 (4) ◽  
pp. 1068-1081 ◽  
Author(s):  
E. Ojeda ◽  
G. Puras ◽  
M. Agirre ◽  
J. Zárate ◽  
S. Grijalvo ◽  
...  

We designed niosomes based on three lipids that differed only in the polar-head group to analyze their influence on the transfection efficiency.


1976 ◽  
Vol 22 (4) ◽  
pp. 557-562 ◽  
Author(s):  
Leslie R. Barran ◽  
Richard W. Miller ◽  
Ian de la Roche

Ten phospholipids were identified in hyphal membrane preparations of Fusarium oxysporum f. sp. lycopersici when the cells were grown to the late log phase at 15, 25, and 37 °C, respectively. The major phospholipids present were phosphatidylcholine (PC) and phosphatidylethanolamine (PE), which together made up about 70% of the total membrane phospholipids. The degree of unsaturation in the acyl group of the phospholipids was inversely related to growth temperature. The polar head group composition was also affected by growth temperature. Cells grown at 15 and 25 °C contained the same relative proportions of PC and PE, but when the growth temperature was raised to 37 °C, the ratio of PC to PE was doubled. A methylating system capable of converting PE to PC was demonstrated in vitro.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 107 ◽  
Author(s):  
Bruna Neves ◽  
Pedro Domingues ◽  
Maria Oliveira ◽  
Maria Domingues ◽  
Tânia Melo

Nitrated lipids have been detected in vitro and in vivo, usually associated with a protective effect. While nitrated fatty acids have been widely studied, few studies reported the nitration and nitroxidation of the phospholipid classes phosphatidylcholine, and phosphatidylethanolamine. However, no information regarding nitrated and nitroxidized phosphatidylserine can be found in the literature. This work aims to identify and characterize the nitrated and nitroxidized derivatives of 1-palmitoyl-2-oleoyl-sn-3-glycero-phosphoserine (POPS), obtained after incubation with nitronium tetrafluoroborate, by liquid chromatography (LC) coupled to mass spectrometry (MS) and tandem MS (MS/MS). Several nitrated and nitroxidized products were identified, namely, nitro, nitroso, nitronitroso, and dinitro derivatives, as well as some nitroxidized species such as nitrosohydroxy, nitrohydroxy, and nitrohydroperoxy. The fragmentation pathways identified were structure-dependent and included the loss of HNO and HNO2 for nitroso and nitro derivatives, respectively. Combined losses of PS polar head group plus HNO or HNO2 and carboxylate anions of modified fatty acyl chain were also observed. The nitrated POPS also showed antiradical potential, demonstrated by the ability to scavenge the ABTS●+ and DPPH● radicals. Overall, this in vitro model of nitration based on LC-MS/MS provided additional insights into the nitrated and nitroxidized derivatives of PS and their fragmentation fingerprinting. This information is a valuable tool for targeted analysis of these modified PS in complex biological samples, to further explore the new clues on the antioxidant potential of nitrated POPS.


1978 ◽  
Vol 175 (3) ◽  
pp. 1113-1118 ◽  
Author(s):  
B Maggio ◽  
F A Cumar ◽  
R Caputto

1. The interactions among five different gangliosides and three chemically related glycosphingolipids and their behaviour in mixed monolayers with six different phospholipids were investigated at the air/145 mM-NaCl interface at pH 5.6. 2. The mixed monolayers of any of the different gangliosides showed an immiscible behaviour at high surface pressures, with absence of interactions among them revealed by an ideal behaviour for mean molecular area and surface potential per molecule. 3. This behaviour was probably the consequence of steric hindrance and electrostatic repulsions between their polar head groups. 4. Di- and tri-sialogangliosides could be differentiated from neutral sphingolipids and monosialogangliosides on the basis of their interactions with phospholipids, which were correlated to the perpendicular electric field at the interface contributed by the carbohydrate residues. 5. The presence of the phosphocholine polar head group in phosphatidylcholine was important to establish interactions with di- and tri-sialogangliosides revealed by negative deviations from the ideal behaviour for mean molecular areas and mean surface potential per molecule. 6. The possible significance of these observations is discussed in relation to the participation of gangliosides in the organization of membranes and to their capability of inducing membrane fusion.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document