scholarly journals Whole-Genome Sequencing of Streptomyces sp. Strain UYFA156, a Cultivar-Specific Plant Growth-Promoting Endophyte of Festuca arundinacea

2019 ◽  
Vol 8 (38) ◽  
Author(s):  
Patricia Vaz Jauri ◽  
Martín Beracochea ◽  
Belén Fernández ◽  
Federico Battistoni

Streptomyces spp. produce many and diverse bioactive metabolites. Plant growth-promoting (PGP) activity by Streptomyces spp. has been reported repeatedly; however, the mechanisms are largely unknown. We report the sequencing of the genome of a PGP endophytic Streptomyces sp. strain, which will contribute to the understanding of the underlying mechanisms for growth promotion.

Author(s):  
Thennarasu Sugumar ◽  
Punithavathi Srinivasan ◽  
B. Muthukumar ◽  
E. Natarajan

Background: Dates palm is one of the most economically important plant mainly cultivated in Northern Africa, Middle East and South Asia. India is the largest importer of date fruit. In India, Dates palm are cultivated majorly in Gujarat and Rajasthan. Dates farmers facing several problem in India due to lack of scientific resources. Plant growth promoting rhizobacteria (PGPR) are naturally associated with plants and it improves plant growth and yield by providing growth supplements, increasing tolerance to stressful conditions and providing resistance to fungal/bacterial diseases. We have isolated a PGPR belonging to Exiguobacterium species TNDT2 from Indian dates palm Phoenix dactylifera, in Dindigul region, Tamilnadu, India. The organism’s genome was sequenced and identified several potential plant growth promoting (PGP) genes. Methods: The organisms genome was sequenced using Whole genome shotgun sequencing method in Illumina platform. Sequences are analysed using various bioinformatics tools and assembled using Velvet assembler. Contigs are annotated using RAST server and deposited in NCBI. Result: The isolated strain revealed various genetic determinants required for plant growth promotion. This study presents the first report of Exiguobacterium TNDT2 genome from Dates tree rhizosphere. Whole genome analysis and genome annotation reveals that, its genome consist of a 2,891,840 bp chromosome encoding over 3062 proteins, with a 51.63% GC content. Strain TNDT2 encodes a wide repertoire of proteins for plant growth promotion, heavy metal detoxification (cadmium, arsenic, mercury, copper and tellurite), Multi-drug resistance and stress resistance (Heat, cold and salt). Based on this study, Exiguobacterium sp. TNDT2 can be recognized as an important organism with a potential to be incorporated into agricultural practice of Date palm.


2018 ◽  
Author(s):  
Filipe P. Matteoli ◽  
Hemanoel Passarelli-Araujo ◽  
Régis Josué A. Reis ◽  
Letícia O. da Rocha ◽  
Emanuel M. de Souza ◽  
...  

ABSTRACTPlant-bacteria associations have been extensively studied for their potential in increasing crop productivity in a sustainable manner. Serratia marcescens is a Gram-negative species found in a wide range of environments, including soil. Here we describe the genome sequencing and assessment of plant-growth promoting abilities of S. marcescens UENF-22GI (SMU), a strain isolated from mature cattle manure vermicompost. In vitro, SMU is able to solubilize P and Zn, to produce indole compounds (likely IAA), to colonize hyphae and counter the growth of two phytopathogenic fungi. Inoculation of maize with SMU remarkably increased seedling growth and biomass under greenhouse conditions. The SMU genome has 5 Mb, assembled in 17 scaffolds comprising 4,662 genes (4,528 are protein-coding). No plasmids were identified. SMU is phylogenetically placed within a clade comprised almost exclusively of environmental strains. We were able to find the genes and operons that are likely responsible for all the interesting plant-growth promoting features that were experimentally described. Genes involved other interesting properties that were not experimentally tested (e.g. tolerance against metal contamination) were also identified. The SMU genome harbors a horizontally-transferred genomic island involved in antibiotic production, antibiotic resistance, and anti-phage defense via a novel ADP-ribosyltransferase-like protein and possible modification of DNA by a deazapurine base, which likely contributes to the SMU competitiveness against other bacteria. Collectively, our results suggest that S. marcescens UENF-22GI is a strong candidate to be used in the enrichment of substrates for plant growth promotion or as part of bioinoculants for Agriculture.


2017 ◽  
Vol 5 (21) ◽  
Author(s):  
Louise F. Thatcher ◽  
Cindy A. Myers ◽  
Cathryn A. O’Sullivan ◽  
Margaret M. Roper

ABSTRACT We report here the draft genome sequence and annotation of Rhodococcus sp. strain 66b isolated from the soil of southwest Western Australia. This strain exhibits a range of bioactivities, including plant growth promotion, biosurfactant production, and wax degradation. Whole-genome sequencing was conducted to uncover the underlying mechanisms.


Author(s):  
J. Monk ◽  
E. Gerard ◽  
S. Young ◽  
K. Widdup ◽  
M. O'Callaghan

Tall fescue (Festuca arundinacea) is a useful alternative to ryegrass in New Zealand pasture but it is slow to establish. Naturally occurring beneficial bacteria in the rhizosphere can improve plant growth and health through a variety of direct and indirect mechanisms. Keywords: rhizosphere, endorhiza, auxin, siderophore, P-solubilisation


2021 ◽  
Vol 11 (5) ◽  
pp. 2233
Author(s):  
Maria J. Ferreira ◽  
Angela Cunha ◽  
Sandro Figueiredo ◽  
Pedro Faustino ◽  
Carla Patinha ◽  
...  

Root−associated microbial communities play important roles in the process of adaptation of plant hosts to environment stressors, and in this perspective, the microbiome of halophytes represents a valuable model for understanding the contribution of microorganisms to plant tolerance to salt. Although considered as the most promising halophyte candidate to crop cultivation, Salicornia ramosissima is one of the least-studied species in terms of microbiome composition and the effect of sediment properties on the diversity of plant-growth promoting bacteria associated with the roots. In this work, we aimed at isolating and characterizing halotolerant bacteria associated with the rhizosphere and root tissues of S. ramosissima, envisaging their application in saline agriculture. Endophytic and rhizosphere bacteria were isolated from wild and crop cultivated plants, growing in different estuarine conditions. Isolates were identified based on 16S rRNA sequences and screened for plant-growth promotion traits. The subsets of isolates from different sampling sites were very different in terms of composition but consistent in terms of the plant-growth promoting traits represented. Bacillus was the most represented genus and expressed the wider range of extracellular enzymatic activities. Halotolerant strains of Salinicola, Pseudomonas, Oceanobacillus, Halomonas, Providencia, Bacillus, Psychrobacter and Brevibacterium also exhibited several plant-growth promotion traits (e.g., 3-indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophores, phosphate solubilization). Considering the taxonomic diversity and the plant-growth promotion potential of the isolates, the collection represents a valuable resource that can be used to optimize the crop cultivation of Salicornia under different environmental conditions and for the attenuation of salt stress in non-halophytes, considering the global threat of arable soil salinization.


Sign in / Sign up

Export Citation Format

Share Document