scholarly journals Whole-Genome Sequence of a Reemerging Listeria monocytogenes Serovar 1/2a Strain in Central Italy

2018 ◽  
Vol 7 (23) ◽  
Author(s):  
Massimiliano Orsini ◽  
Marina Torresi ◽  
Claudio Patavino ◽  
Patrizia Centorame ◽  
Antonio Rinaldi ◽  
...  

We report the whole-genome sequence of a Listeria monocytogenes strain isolated from a child in central Italy. Interestingly, the sequence showed a difference of only 13 single-nucleotide polymorphisms (SNPs) from a strain responsible for a severe listeriosis outbreak that occurred between January 2015 and March 2016 in the same region.

2021 ◽  
Author(s):  
Tofazzal Islam ◽  
Nadia Afroz ◽  
ChuShin Koh ◽  
M. Nazmul Haque ◽  
Md. Jillur Rahman ◽  
...  

Abstract Background Jackfruit (Artocarpus heterophyllus Lam.) is a tropical and sub-tropical fruit tree distributed in Asia, Africa, and South America. It is the national fruit of Bangladesh and produces fruit in the summer season only. However, a year-round jackfruit variety, BARI Kanthal-3 developed by Bangladesh Agricultural Research Institute (BARI) provides fruits from September to June. This study aimed to evaluate the agronomic performance of BARI Kanthal-3 and to generate a draft whole genome sequence to obtain molecular insights of this important unique variety. Results Number of fruits, average each fruit weight, fruit yield per plant, edible portion in fruit and ß carotene content of BARI Kanthal-3 (n = 5) were 422/plant/year, 5.60 kg, 236.32 kg/year, 53.5% and 3614 mg/100g, respectively. During de novo assembly, 817.7 Mb of the BARI Kanthal-3 genome was scaffolded. However, in the reference-guided genome assembly, almost 843 Mb of the BARI Kanthal-3 genome was scaffolded. Through BUSCO assessment, 97.2% of the core genes were represented in the assembly with 1.3% and 1.5% either fragmented or missing, respectively. By comparing the single copy orthologues (SCOs) in three closely and one distantly related species of BARI Kanthal-3, 706 SCOs were found to be shared across the genomes of the five species. The phylogenetic analysis of the shared SCOs showed that A. heterophyllus is the closest species to BARI Kantal-3. The estimated genome size of BARI Kanthal-3 was 1.04 giga base pairs (Gbp) with a heterozygosity rate of 1.62%. The estimated GC content was 34.10%. Variant analysis revealed that BARI Kanthal-3 includes 5.7 M (35%) and 10.4 M (65%) simple and heterozygous single nucleotide polymorphisms (SNPs), and about 90% of all these polymorphisms are located in inter-genic regions. Conclusion The whole-genome sequence of A. heterophyllus cv. BARI Kanthal-3 reveals extremely high single nucleotide polymorphisms in inter-genic regions. The findings of this study will help better understanding the evolution, domestication, phylogenetic relationships, year-round fruiting and the markers development for molecular breeding of this highly nutritious fruit crop.


2021 ◽  
Vol 9 (3) ◽  
pp. 570
Author(s):  
Maphuti Betty Ledwaba ◽  
Barbara Akorfa Glover ◽  
Itumeleng Matle ◽  
Giuseppe Profiti ◽  
Pier Luigi Martelli ◽  
...  

The availability of whole genome sequences in public databases permits genome-wide comparative studies of various bacterial species. Whole genome sequence-single nucleotide polymorphisms (WGS-SNP) analysis has been used in recent studies and allows the discrimination of various Brucella species and strains. In the present study, 13 Brucella spp. strains from cattle of various locations in provinces of South Africa were typed and discriminated. WGS-SNP analysis indicated a maximum pairwise distance ranging from 4 to 77 single nucleotide polymorphisms (SNPs) between the South African Brucella abortus virulent field strains. Moreover, it was shown that the South African B. abortus strains grouped closely to B. abortus strains from Mozambique and Zimbabwe, as well as other Eurasian countries, such as Portugal and India. WGS-SNP analysis of South African B. abortus strains demonstrated that the same genotype circulated in one farm (Farm 1), whereas another farm (Farm 2) in the same province had two different genotypes. This indicated that brucellosis in South Africa spreads within the herd on some farms, whereas the introduction of infected animals is the mode of transmission on other farms. Three B. abortus vaccine S19 strains isolated from tissue and aborted material were identical, even though they originated from different herds and regions of South Africa. This might be due to the incorrect vaccination of animals older than the recommended age of 4–8 months or might be a problem associated with vaccine production.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1794
Author(s):  
Elizabeth Sage Hunter ◽  
Robert Literman ◽  
Sara M. Handy

The botanical genus Digitalis is equal parts colorful, toxic, and medicinal, and its bioactive compounds have a long history of therapeutic use. However, with an extremely narrow therapeutic range, even trace amounts of Digitalis can cause adverse effects. Using chemical methods, the United States Food and Drug Administration traced a 1997 case of Digitalis toxicity to a shipment of Plantago (a common ingredient in dietary supplements marketed to improve digestion) contaminated with Digitalis lanata. With increased accessibility to next generation sequencing technology, here we ask whether this case could have been cracked rapidly using shallow genome sequencing strategies (e.g., genome skims). Using a modified implementation of the Site Identification from Short Read Sequences (SISRS) bioinformatics pipeline with whole-genome sequence data, we generated over 2 M genus-level single nucleotide polymorphisms in addition to species-informative single nucleotide polymorphisms. We simulated dietary supplement contamination by spiking low quantities (0–10%) of Digitalis whole-genome sequence data into a background of commonly used ingredients in products marketed for “digestive cleansing” and reliably detected Digitalis at the genus level while also discriminating between Digitalis species. This work serves as a roadmap for the development of novel DNA-based assays to quickly and reliably detect the presence of toxic species such as Digitalis in food products or dietary supplements using genomic methods and highlights the power of harnessing the entire genome to identify botanical species.


2015 ◽  
Vol 81 (17) ◽  
pp. 6024-6037 ◽  
Author(s):  
Matthew J. Stasiewicz ◽  
Haley F. Oliver ◽  
Martin Wiedmann ◽  
Henk C. den Bakker

ABSTRACTWhile the food-borne pathogenListeria monocytogenescan persist in food associated environments, there are no whole-genome sequence (WGS) based methods to differentiate persistent from sporadic strains. Whole-genome sequencing of 188 isolates from a longitudinal study ofL. monocytogenesin retail delis was used to (i) apply single-nucleotide polymorphism (SNP)-based phylogenetics for subtyping ofL. monocytogenes, (ii) use SNP counts to differentiate persistent from repeatedly reintroduced strains, and (iii) identify genetic determinants ofL. monocytogenespersistence. WGS analysis revealed three prophage regions that explained differences between three pairs of phylogenetically similar populations with pulsed-field gel electrophoresis types that differed by ≤3 bands. WGS-SNP-based phylogenetics found that putatively persistentL. monocytogenesrepresent SNP patterns (i) unique to a single retail deli, supporting persistence within the deli (11 clades), (ii) unique to a single state, supporting clonal spread within a state (7 clades), or (iii) spanning multiple states (5 clades). Isolates that formed one of 11 deli-specific clades differed by a median of 10 SNPs or fewer. Isolates from 12 putative persistence events had significantly fewer SNPs (median, 2 to 22 SNPs) than between isolates of the same subtype from other delis (median up to 77 SNPs), supporting persistence of the strain. In 13 events, nearly indistinguishable isolates (0 to 1 SNP) were found across multiple delis. No individual genes were enriched among persistent isolates compared to sporadic isolates. Our data show that WGS analysis improves food-borne pathogen subtyping and identification of persistent bacterial pathogens in food associated environments.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 318
Author(s):  
Md. Bazlur Rahman Mollah ◽  
Md. Shamsul Alam Bhuiyan ◽  
M.A.M. Yahia Khandoker ◽  
Md. Abdul Jalil ◽  
Gautam Kumar Deb ◽  
...  

The Black Bengal goat (BBG) is a dwarf sized heritage goat (Capra hircus) breed from Bangladesh, and is well known for its high fertility, excellent meat and skin quality. Here we present the first whole genome sequence and genome-wide distributed single nucleotide polymorphisms (SNPs) of the BBG. A total of 833,469,900 raw reads consisting of 125,020,485,000 bases were obtained by sequencing one male BBG sample. The reads were aligned to the San Clemente and the Yunnan black goat genome which resulted in 98.65% (properly paired, 94.81%) and 98.50% (properly paired, 97.10%) of the reads aligning, respectively. Notably, the estimated sequencing coverages were 48.22X and 44.28X compared to published San Clemente and the Yunnan black goat genomes respectively. On the other hand, a total of 9,497,875 high quality SNPs (Q ≥ 20) along with 1,023,359 indels, and 8,746,849 high quality SNPs along with 842,706 indels were identified in BBG against the San Clemente and Yunnan black goat genomes respectively. The dataset is publicly available from NCBI BioSample (SAMN10391846), Sequence Read Archive (SRR8182317, SRR8549413 and SRR8549904), with BioProject ID PRJNA504436. These data might be useful genomic resources in conducting genome wide association studies, identification of quantitative trait loci (QTLs) and functional genomic analysis of the Black Bengal goat.


2015 ◽  
Vol 53 (9) ◽  
pp. 2869-2876 ◽  
Author(s):  
Werner Ruppitsch ◽  
Ariane Pietzka ◽  
Karola Prior ◽  
Stefan Bletz ◽  
Haizpea Lasa Fernandez ◽  
...  

Whole-genome sequencing (WGS) has emerged today as an ultimate typing tool to characterizeListeria monocytogenesoutbreaks. However, data analysis and interlaboratory comparability of WGS data are still challenging for most public health laboratories. Therefore, we have developed and evaluated a newL. monocytogenestyping scheme based on genome-wide gene-by-gene comparisons (core genome multilocus the sequence typing [cgMLST]) to allow for a unique typing nomenclature. Initially, we determined the breadth of theL. monocytogenespopulation based on MLST data with a Bayesian approach. Based on the genome sequence data of representative isolates for the whole population, cgMLST target genes were defined and reappraised with 67L. monocytogenesisolates from two outbreaks and serotype reference strains. The Bayesian population analysis generated fiveL. monocytogenesgroups. Using all available NCBI RefSeq genomes (n= 36) and six additionally sequenced strains, all genetic groups were covered. Pairwise comparisons of these 42 genome sequences resulted in 1,701 cgMLST targets present in all 42 genomes with 100% overlap and ≥90% sequence similarity. Overall, ≥99.1% of the cgMLST targets were present in 67 outbreak and serotype reference strains, underlining the representativeness of the cgMLST scheme. Moreover, cgMLST enabled clustering of outbreak isolates with ≤10 alleles difference and unambiguous separation from unrelated outgroup isolates. In conclusion, the novel cgMLST scheme not only improves outbreak investigations but also enables, due to the availability of the automatically curated cgMLST nomenclature, interlaboratory exchange of data that are crucial, especially for rapid responses during transsectorial outbreaks.


2011 ◽  
Vol 77 (17) ◽  
pp. 6290-6294 ◽  
Author(s):  
Sara Lomonaco ◽  
Stephen J. Knabel ◽  
Alessandra Dalmasso ◽  
Tiziana Civera ◽  
Maria Teresa Bottero

ABSTRACTA novel primer extension-based, multiplex minisequencing assay targeting six highly informative single nucleotide polymorphisms (SNPs) in four virulence genes correctly identified and differentiated all four epidemic clones (ECs) ofListeria monocytogenesand 9 other strains initially misclassified as non-ECs. This assay allows rapid, accurate, and high-throughput screening for all known ECs ofL. monocytogenes.


2018 ◽  
Vol 6 (25) ◽  
Author(s):  
Anjan Venkatesh ◽  
Anthony L. Murray ◽  
Adrian B. Boyle ◽  
Lisa Quinn Farrington ◽  
Timothy J. Maher ◽  
...  

ABSTRACT Metschnikowia strain UCD127 was isolated from soil in Ireland and sequenced. It is a highly heterozygous diploid strain with 385,000 single nucleotide polymorphisms (SNPs). Its ribosomal DNA has the highest similarity to that of M. chrysoperlae, but its ACT1 and TEF1 loci and mitochondrial genome show affinity to those of M. fructicola, whose genome is significantly larger.


2019 ◽  
Vol 8 (36) ◽  
Author(s):  
Massimiliano Orsini ◽  
Alessandra Ordinelli ◽  
Alessandra Cornacchia ◽  
Vicdalia Acciari ◽  
Patrizia Centorame ◽  
...  

Here, we report the genome sequence of Listeria monocytogenes serovar 1/2a strain IZSAM_Lm_15_17439_A144, isolated in Italy from a patient during a Listeria monocytogenes outbreak in 2008. This strain showed 98.9% sequence identity to a strain isolated in Canada in the same year.


Sign in / Sign up

Export Citation Format

Share Document