scholarly journals Genome Sequence of Mycobacterium abscessus Phage phiT46-1

2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Elizabeth D. Amarh ◽  
Rebekah M. Dedrick ◽  
Rebecca A. Garlena ◽  
Daniel A. Russell ◽  
Deborah Jacobs-Sera ◽  
...  

ABSTRACT Mycobacteriophage phiT46-1 is a newly isolated Mycobacterium phage that was isolated by spontaneous release from Mycobacterium abscessus strain Taiwan-46 and infects M. abscessus strain BWH-C. Phage phiT46-1 is unrelated to previously described mycobacteriophages, has a 52,849-bp genome, and includes a polymorphic toxin-immunity cassette associated with type VII secretion systems.

2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Elizabeth D. Amarh ◽  
Christian H. Gauthier ◽  
Rebekah M. Dedrick ◽  
Rebecca A. Garlena ◽  
Daniel A. Russell ◽  
...  

ABSTRACT Mycobacteriophage phiT45-1 is a newly isolated bacteriophage spontaneously released from Mycobacterium abscessus strain Taiwan-45 that lytically infects M. abscessus strain BWH-C; phiT45-1 also infects M. abscessus ATCC 19977 but not Mycobacterium smegmatis. Phage phiT45-1 has a 43,407-bp genome and carries a polymorphic toxin-immunity cassette associated with type VII secretion systems.


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Rebekah M. Dedrick ◽  
Haley G. Aull ◽  
Deborah Jacobs-Sera ◽  
Rebecca A. Garlena ◽  
Daniel A. Russell ◽  
...  

ABSTRACT Mycobacterium abscessus is an emerging pathogen that is often refractory to antibiotic control. Treatment is further complicated by considerable variation among clinical isolates in both their genetic constitution and their clinical manifestations. Here, we show that the prophage and plasmid mobilome is a likely contributor to this variation. Prophages and plasmids are common, abundant, and highly diverse, and code for large repertoires of genes influencing virulence, antibiotic susceptibility, and defense against viral infection. At least 85% of the strains we describe carry one or more prophages, representing at least 17 distinct and diverse sequence “clusters,” integrated at 18 different attB locations. The prophages code for 19 distinct configurations of polymorphic toxin and toxin-immunity systems, each with WXG-100 motifs for export through type VII secretion systems. These are located adjacent to attachment junctions, are lysogenically expressed, and are implicated in promoting growth in infected host cells. Although the plethora of prophages and plasmids confounds the understanding of M. abscessus pathogenicity, they also provide an abundance of tools for M. abscessus engineering. IMPORTANCE Mycobacterium abscessus is an important emerging pathogen that is challenging to treat with current antibiotic regimens. There is substantial genomic variation in M. abscessus clinical isolates, but little is known about how this influences pathogenicity and in vivo growth. Much of the genomic variation is likely due to the large and varied mobilome, especially a large and diverse array of prophages and plasmids. The prophages are unrelated to previously characterized phages of mycobacteria and code for a diverse array of genes implicated in both viral defense and in vivo growth. Prophage-encoded polymorphic toxin proteins secreted via the type VII secretion system are common and highly varied and likely contribute to strain-specific pathogenesis.


Microbiology ◽  
2021 ◽  
Vol 167 (7) ◽  
Author(s):  
Marion Lagune ◽  
Cecile Petit ◽  
Flor Vásquez Sotomayor ◽  
Matt D. Johansen ◽  
Kathrine S. H. Beckham ◽  
...  

Non-tuberculous mycobacteria (NTM) are a large group of micro-organisms comprising more than 200 individual species. Most NTM are saprophytic organisms and are found mainly in terrestrial and aquatic environments. In recent years, NTM have been increasingly associated with infections in both immunocompetent and immunocompromised individuals, prompting significant efforts to understand the diverse pathogenic and signalling traits of these emerging pathogens. Since the discovery of Type VII secretion systems (T7SS), there have been significant developments regarding the role of these complex systems in mycobacteria. These specialised systems, also known as Early Antigenic Secretion (ESX) systems, are employed to secrete proteins across the inner membrane. They also play an essential role in virulence, nutrient uptake and conjugation. Our understanding of T7SS in mycobacteria has significantly benefited over the last few years, from the resolution of ESX-3 structure in Mycobacterium smegmatis , to ESX-5 structures in Mycobacterium xenopi and Mycobacterium tuberculosis . In addition, ESX-4, considered until recently as a non-functional system in both pathogenic and non-pathogenic mycobacteria, has been proposed to play an important role in the virulence of Mycobacterium abscessus ; an increasingly recognized opportunistic NTM causing severe lung diseases. These major findings have led to important new insights into the functional mechanisms of these biological systems, their implication in virulence, nutrient acquisitions and cell wall shaping, and will be discussed in this review.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
M. Sloan Siegrist ◽  
Magnus Steigedal ◽  
Rushdy Ahmad ◽  
Alka Mehra ◽  
Marte S. Dragset ◽  
...  

ABSTRACT The type VII secretion systems are conserved across mycobacterial species and in many Gram-positive bacteria. While the well-characterized Esx-1 pathway is required for the virulence of pathogenic mycobacteria and conjugation in the model organism Mycobacterium smegmatis, Esx-3 contributes to mycobactin-mediated iron acquisition in these bacteria. Here we show that several Esx-3 components are individually required for function under low-iron conditions but that at least one, the membrane-bound protease MycP3 of M. smegmatis, is partially expendable. All of the esx-3 mutants tested, including the ΔmycP 3ms mutant, failed to export the native Esx-3 substrates EsxH ms and EsxG ms to quantifiable levels, as determined by targeted mass spectrometry. Although we were able to restore low-iron growth to the esx-3 mutants by genetic complementation, we found a wide range of complementation levels for protein export. Indeed, minute quantities of extracellular EsxH ms and EsxG ms were sufficient for iron acquisition under our experimental conditions. The apparent separation of Esx-3 function in iron acquisition from robust EsxG ms and EsxH ms secretion in the ΔmycP 3ms mutant and in some of the complemented esx-3 mutants compels reexamination of the structure-function relationships for type VII secretion systems. IMPORTANCE Mycobacteria have several paralogous type VII secretion systems, Esx-1 through Esx-5. Whereas Esx-1 is required for pathogenic mycobacteria to grow within an infected host, Esx-3 is essential for growth in vitro. We and others have shown that Esx-3 is required for siderophore-mediated iron acquisition. In this work, we identify individual Esx-3 components that contribute to this process. As in the Esx-1 system, most mutations that abolish Esx-3 protein export also disrupt its function. Unexpectedly, however, ultrasensitive quantitation of Esx-3 secretion by multiple-reaction-monitoring mass spectrometry (MRM-MS) revealed that very low levels of export were sufficient for iron acquisition under similar conditions. Although protein export clearly contributes to type VII function, the relationship is not absolute.


2021 ◽  
Vol 10 (26) ◽  
Author(s):  
Rustam M. Buzikov ◽  
Tatsiana A. Pilipchuk ◽  
Leonid N. Valentovich ◽  
Emilia I. Kalamiyets ◽  
Andrey M. Shadrin

Pseudomonas syringae BIM B-268 is the strain used for in vitro testing of the efficiency of Multiphage, a bacteriophage-based biopesticide produced in Belarus. The genome sequence of this strain consists of a single circular chromosome harboring the genes encoding the ice nucleation protein, syringopeptin biosynthesis, and types III and VI secretion systems.


2019 ◽  
Vol 8 (45) ◽  
Author(s):  
Leena Neyaz ◽  
Anand B. Karki ◽  
Mohamed K. Fakhr

The whole-genome sequence of Staphylococcus argenteus strain B3-25B, isolated from retail beef liver, comprises a circular chromosome (2,676,222 bp) and a single plasmid (21,570 bp). The chromosome harbors genes encoding the type VII secretion system and several virulence factors.


2017 ◽  
Vol 5 (20) ◽  
Author(s):  
Sujeet Kumar ◽  
Ashok Kumar Jangam ◽  
V. Akhil ◽  
Vidya Rajendran ◽  
Vinaya Kumar Katneni ◽  
...  

ABSTRACT We report here the genome sequence of Vibrio campbellii LB102, isolated from the broodstock rearing system of a shrimp hatchery in India. Sequence analysis revealed the presence of effector toxins of the type III (YopT, sharing 39% identity with Yersinia pestis) and type VI (VgrG-3 and hemolysin coregulated protein of V. cholerae) secretion systems.


2012 ◽  
Vol 80 (9) ◽  
pp. 3132-3144 ◽  
Author(s):  
Stefano Casonato ◽  
Axel Cervantes Sánchez ◽  
Hirohito Haruki ◽  
Monica Rengifo González ◽  
Roberta Provvedi ◽  
...  

ABSTRACTThe proteins belonging to the WhiB superfamily are small global transcriptional regulators typical of actinomycetes. In this paper, we characterize the role of WhiB5, aMycobacterium tuberculosisprotein belonging to this superfamily. A null mutant was constructed inM. tuberculosisH37Rv and was shown to be attenuated during both progressive and chronic mouse infections. Mice infected with the mutant had smaller bacillary burdens in the lungs but a larger inflammatory response, suggesting a role of WhiB5 in immunomodulation. Most interestingly, thewhiB5mutant was not able to resume growth after reactivation from chronic infection, suggesting that WhiB5 controls the expression of genes involved in this process. The mutant was also more sensitive than the wild-type parental strain toS-nitrosoglutathione (GSNO) and was less metabolically active following prolonged starvation, underscoring the importance of GSNO and starvation in development and maintenance of chronic infection. DNA microarray analysis identified 58 genes whose expression is influenced by WhiB5, includingsigM, encoding an alternative sigma factor, and genes encoding the constituents of two type VII secretion systems, namely, ESX-2 and ESX-4.


2016 ◽  
Vol 84 (8) ◽  
pp. 2255-2263 ◽  
Author(s):  
Emir Tinaztepe ◽  
Jun-Rong Wei ◽  
Jenelle Raynowska ◽  
Cynthia Portal-Celhay ◽  
Victor Thompson ◽  
...  

More people die every year fromMycobacterium tuberculosisinfection than from infection by any other bacterial pathogen. Type VII secretion systems (T7SS) are used by both environmental and pathogenic mycobacteria to secrete proteins across their complex cell envelope. In the nonpathogenMycobacterium smegmatis, the ESX-1 T7SS plays a role in conjugation, and the ESX-3 T7SS is involved in metal homeostasis. InM. tuberculosis, these secretion systems have taken on roles in virulence, and they also are targets of the host immune response. ESX-3 secretes a heterodimer composed of EsxG (TB9.8) and EsxH (TB10.4), which impairs phagosome maturation in macrophages and is essential for virulence in mice. Given the importance of EsxG and EsxH during infection, we examined their regulation. WithM. tuberculosis, the secretion of EsxG and EsxH was regulated in response to iron and zinc, in accordance with the previously described transcriptional response of theesx-3locus to these metals. While iron regulated theesx-3expression in bothM. tuberculosisandM. smegmatis, there is a significant difference in the dynamics of this regulation. InM. smegmatis, theesx-3locus behaved like other iron-regulated genes such asmbtB. InM. tuberculosis, both iron and zinc modestly repressedesx-3expression. Diminished secretion of EsxG and EsxH in response to these metals altered the interaction ofM. tuberculosiswith macrophages, leading to impaired intracellularM. tuberculosissurvival. Our findings detail the regulatory differences ofesx-3inM. tuberculosisandM. smegmatisand demonstrate the importance of metal-dependent regulation of ESX-3 for virulence inM. tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document