scholarly journals Disarming Pore-Forming Toxins with Biomimetic Nanosponges in Intraocular Infections

mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Phillip S. Coburn ◽  
Frederick C. Miller ◽  
Austin L. LaGrow ◽  
Craig Land ◽  
Huzzatul Mursalin ◽  
...  

ABSTRACTIntraocular infections are prevalent after traumatic injuries or after common ocular surgeries. Infections cause inflammation that can damage the retina and architecture of the eye, often resulting in poor visual outcomes. Severe cases may result in blindness or require enucleation of the eye. Treatments for intraocular infections include intravitreal antibiotics and corticosteroids or surgical vitrectomy in serious cases. The increase in multidrug-resistant infections calls for novel treatment options. In the present study, a biomimetic erythrocyte-derived nanosponge was tested for the ability to neutralize pore-forming toxins from the most frequent Gram-positive bacterial causes of intraocular infections (Staphylococcus aureus,Enterococcus faecalis,Streptococcus pneumoniae, andBacillus cereus). Nanosponge pretreatment of supernatants reduced hemolytic activityin vitro.In a murine sterile endophthalmitis model, nanosponge pretreatment of injected supernatants resulted in greater retinal function and less ocular pathology compared to that in eyes injected with untreated supernatants from all pathogens except methicillin-resistantS. aureus. In a murine bacterial endophthalmitis model, treatment with gatifloxacin and gatifloxacin-nanosponges reduced intraocular bacterial burdens, except in the case of methicillin-sensitiveS. aureus. For all pathogens, eyes in both treatment groups showed decreased ocular pathology and inflammation. Overall, reductions in retinal function loss afforded by gatifloxacin-nanosponge treatment were significant forE. faecalis,S. pneumoniae, and methicillin-resistantS. aureusbut not forB. cereusand methicillin-sensitiveS. aureus. These results suggest that clinical improvements in intraocular infections following nanosponge treatment were dependent on the complexity and types of toxins produced. Nanosponges might serve as an adjunctive therapy for the treatment of ocular infections.IMPORTANCEEndophthalmitis is a blinding consequence of bacterial invasion of the interior of the eye. Because of increases in the numbers of ocular surgeries and intraocular injections, the incidence of endophthalmitis is steadily increasing.Staphylococcus aureus,Enterococcus faecalis,Streptococcus pneumoniae, andBacillus cereusare leading causes of infection following ocular procedures and trauma and are increasingly more difficult to treat due to multidrug resistance. Each of these pathogens produces pore-forming toxins that contribute to the pathogenesis of endophthalmitis. Treatment of these infections with antibiotics alone is insufficient to prevent damage to the retina and vision loss. Therefore, novel therapeutics are needed that include agents that neutralize bacterial pore-forming toxins. Here, we demonstrate that biomimetic nanosponges neutralize pore-forming toxins from these ocular pathogens and aid in preserving retinal function. Nanosponges may represent a new form of adjunct antitoxin therapy for serious potentially blinding intraocular infections.

2015 ◽  
Vol 59 (4) ◽  
pp. 2458-2461 ◽  
Author(s):  
Helio S. Sader ◽  
Robert K. Flamm ◽  
Jennifer M. Streit ◽  
David J. Farrell ◽  
Ronald N. Jones

ABSTRACTA total of 84,704 isolates were collected from 191 medical centers in 2009 to 2013 and tested for susceptibility to ceftaroline and comparator agents by broth microdilution methods. Ceftaroline inhibited allStaphylococcus aureusisolates at ≤2 μg/ml and was very active against methicillin-resistant strains (MIC at which 90% of the isolates tested are inhibited [MIC90], 1 μg/ml; 97.6% susceptible). AmongStreptococcus pneumoniaeisolates, the highest ceftaroline MIC was 0.5 μg/ml, and ceftaroline activity against the most commonEnterobacteriaceaespecies (MIC50, 0.12 μg/ml; 78.9% susceptible) was similar to that of ceftriaxone (MIC50, ≤0.25 μg/ml; 86.8% susceptible).


2014 ◽  
Vol 58 (4) ◽  
pp. 2418-2421 ◽  
Author(s):  
Cong-Ran Li ◽  
Qian-Qian Zhai ◽  
Xiu-Kun Wang ◽  
Xin-Xin Hu ◽  
Guo-Qing Li ◽  
...  

ABSTRACTMRX-I is a potent oxazolidinone antibiotic against Gram-positive pathogens, including methicillin-resistantStaphylococcus aureus(MRSA), penicillin-resistantStreptococcus pneumoniae(PRSP), penicillin-intermediateS. pneumoniae(PISP), and vancomycin-resistant enterococci (VRE). In this study, thein vivoefficacy of orally administered MRX-I was evaluated using linezolid as a comparator. MRX-I showed the same or better efficacy than linezolid in both systemic and local infection models against the tested strains.


2013 ◽  
Vol 57 (10) ◽  
pp. 4653-4655 ◽  
Author(s):  
P. Cottagnoud ◽  
M. Cottagnoud ◽  
F. Acosta ◽  
A. Stucki

ABSTRACTCeftaroline is a new cephalosporin with bactericidal activity against resistant Gram-positive organisms, including methicillin-resistantStaphylococcus aureus(MRSA) and penicillin-resistantStreptococcus pneumoniae, as well as common Gram-negative organisms. This study tested the prodrug, ceftaroline fosamil, against a penicillin-sensitive and a penicillin-resistant strain ofS. pneumoniaein an experimental rabbit meningitis model. The penetration of ceftaroline into inflamed meninges was approximately 14%. Ceftaroline fosamil was slightly superior to ceftriaxone against the penicillin-sensitive strain and significantly superior to the combination of ceftriaxone and vancomycin against the penicillin-resistant strain.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Kavindra V. Singh ◽  
Cesar A. Arias ◽  
Barbara E. Murray

ABSTRACT In a mouse peritonitis model, tedizolid was comparable to linezolid and daptomycin against an Enterococcus faecium strain (VANr, AMPr), an Enterococcus faecalis strain, and a methicillin-resistant Staphylococcus aureus (MRSA) strain with and without cfr. Against a cfr(B)+ E. faecium, tedizolid was inferior in vivo to linezolid and daptomycin, despite an ∼4-fold lower MIC.


2013 ◽  
Vol 57 (4) ◽  
pp. 1982-1988 ◽  
Author(s):  
Helio S. Sader ◽  
Robert K. Flamm ◽  
Ronald N. Jones

ABSTRACTCeftaroline-avibactam and comparator agents were tested by the broth microdilution method against 20,089 isolates consecutively collected in 2010 and 2011 from 75 U.S. medical centers. Ceftaroline-avibactam was active againstEnterobacteriaceae(4,908 strains; MIC90, 0.25 μg/ml; highest MIC, 4 μg/ml), including meropenem-nonsusceptibleKlebsiellaspp. and ceftazidime-nonsusceptibleEnterobacter cloacaestrains (MIC90, 1 μg/ml for both). Ceftaroline-avibactam was also active against ceftriaxone-nonsusceptibleStreptococcus pneumoniae(MIC90, 0.25 μg/ml) and methicillin-resistantStaphylococcus aureus(MIC90, 1 μg/ml).


2011 ◽  
Vol 55 (12) ◽  
pp. 5480-5484 ◽  
Author(s):  
Yuhan Chang ◽  
Wen-Chien Chen ◽  
Pang-Hsin Hsieh ◽  
Dave W. Chen ◽  
Mel S. Lee ◽  
...  

ABSTRACTThe objective of this study was to evaluate the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with daptomycin, vancomycin, and teicoplanin against methicillin-susceptibleStaphylococcus aureus(MSSA), methicillin-resistantStaphylococcus aureus(MRSA), and vancomycin-intermediateStaphylococcus aureus(VISA) strains. Standardized cement specimens made from 40 g PMMA loaded with 1 g (low-dose), 4 g (middle-dose) or 8 g (high-dose) antibiotics were tested for elution characteristics and antibacterial activities. The patterns of release of antibiotics from the cement specimens were evaluated usingin vitrobroth elution assay with high-performance liquid chromatography. The activities of broth elution fluid against differentStaphylococcus aureusstrains (MSSA, MRSA, and VISA) were then determined. The antibacterial activities of all the tested antibiotics were maintained after being mixed with PMMA. The cements loaded with higher dosages of antibiotics showed longer elution periods. Regardless of the antibiotic loading dose, the teicoplanin-loaded cements showed better elution efficacy and provided longer inhibitory periods against MSSA, MRSA, and VISA than cements loaded with the same dose of vancomycin or daptomycin. Regarding the choice of antibiotics for cement loading in the treatment ofStaphylococcus aureusinfection, teicoplanin was superior in terms of antibacterial effects.


2015 ◽  
Vol 59 (12) ◽  
pp. 7571-7580 ◽  
Author(s):  
Wei-Tao Jia ◽  
Qiang Fu ◽  
Wen-Hai Huang ◽  
Chang-Qing Zhang ◽  
Mohamed N. Rahaman

ABSTRACTThere is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TECin vitroand to cure methicillin-resistantStaphylococcus aureus(MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC.


2011 ◽  
Vol 55 (5) ◽  
pp. 2466-2468 ◽  
Author(s):  
Yurika Ikeda-Dantsuji ◽  
Hideaki Hanaki ◽  
Taiji Nakae ◽  
Yoshio Takesue ◽  
Kazunori Tomono ◽  
...  

ABSTRACTMethicillin-resistantStaphylococcus aureuswith a MIC of linezolid of 4 μg/ml, isolated from a patient who had undergone unsuccessful linezolid therapy, yielded linezolid-resistant mutants in blood agar at 48 h of incubation. The resistant clones showed a MIC of linezolid ranging from 8 to 64 μg/ml and accumulated the T2500A mutation(s) of the rRNA genes. Emergence of these resistant clones appears to be facilitated by a cryptic mutation or mutations associated with chloramphenicol resistance.


2015 ◽  
Vol 59 (8) ◽  
pp. 4497-4503 ◽  
Author(s):  
Katie E. Barber ◽  
Jordan R. Smith ◽  
Cortney E. Ireland ◽  
Blaise R. Boles ◽  
Warren E. Rose ◽  
...  

ABSTRACTAnnually, medical device infections are associated with >250,000 catheter-associated bloodstream infections (CLABSI), with up to 25% mortality.Staphylococcus aureus, a primary pathogen in these infections, is capable of biofilm production, allowing organism persistence in harsh environments, offering antimicrobial protection. With increases inS. aureusisolates with reduced susceptibility to current agents, ceftaroline (CPT) offers a therapeutic alternative. Therefore, we evaluated whether CPT would have a role against biofilm-producing methicillin-resistantS. aureus(MRSA), including those with decreased susceptibilities to alternative agents. In this study, we investigated CPT activity alone or combined with daptomycin (DAP) or rifampin (RIF) against 3 clinical biofilm-producing MRSA strains in anin vitrobiofilm pharmacokinetic/pharmacodynamic (PK/PD) model. Simulated antimicrobial regimens were as follows: 600 mg of CPT every 8 h (q8h) (free maximum concentration of drug [fCmax], 17.04 mg/liter; elimination half-life [t1/2], 2.66 h), 12 mg/kg of body weight/day of DAP (fCmax, 14.7 mg/liter;t1/2, 8 h), and 450 mg of RIF q12h (fCmax, 3.5 mg/liter;t1/2, 3.4 h), CPT plus DAP, and CPT plus RIF. Samples were obtained and plated to determine colony counts. Differences in log10CFU/cm2were evaluated by analysis of variance with Tukey'spost hoctest. The strains were CPT and vancomycin susceptible and DAP nonsusceptible (DNS). CPT displayed activity throughout the experiment. DAP demonstrated initial activity with regrowth at 24 h in all strains. RIF was comparable to the drug-free control, and little benefit was observed when combined with CPT. CPT plus DAP displayed potent activity, with an average log10CFU/cm2reduction of 3.33 ± 1.01 from baseline. CPT demonstrated activity against biofilm-producing DNS MRSA. CPT plus DAP displayed therapeutic enhancement over monotherapy, providing a potential option for difficult-to-treat medical device infections.


2016 ◽  
Vol 60 (10) ◽  
pp. 6333-6340 ◽  
Author(s):  
Binh An Diep ◽  
Vien T. M. Le ◽  
Zehra C. Visram ◽  
Harald Rouha ◽  
Lukas Stulik ◽  
...  

ABSTRACTCommunity-associated methicillin-resistantStaphylococcus aureus(CA-MRSA), especially the USA300 pulsotype, is a frequent cause of skin and soft tissue infections and severe pneumonia. Despite appropriate antibiotic treatment, complications are common and pneumonia is associated with high mortality.S. aureusstrains express multiple cytotoxins, including alpha-hemolysin (Hla) and up to five bicomponent leukocidins that specifically target phagocytic cells for lysis. CA-MRSA USA300 strains carry the genes for all six cytotoxins. Species specificity of the leukocidins greatly contributes to the ambiguity regarding their role inS. aureuspathogenesis. We performed a comparative analysis of the leukocidin susceptibility of human, rabbit, and mouse polymorphonuclear leukocytes (PMNs) to assess the translational value of mouse and rabbitS. aureusmodels. We found that mouse PMNs were largely resistant to LukSF-PV, HlgAB, and HlgCB and susceptible only to LukED, whereas rabbit and human PMNs were highly sensitive to all these cytotoxins. In the rabbit pneumonia model with a USA300 CA-MRSA strain, passive immunization with a previously identified human monoclonal antibody (MAb), Hla-F#5, which cross-neutralizes Hla, LukSF-PV, HlgAB, HlgCB, and LukED, provided full protection, whereas an Hla-specific MAb was only partially protective. In the mouse USA300 CA-MRSA pneumonia model, both types of antibodies demonstrated full protection, suggesting that Hla, but not leukocidin(s), is the principal virulence determinant in mice. As the rabbit recapitulates the high susceptibility to leukocidins characteristic of humans, this species represents a valuable model for assessing novel, cytotoxin-targeting anti-S. aureustherapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document