scholarly journals The Aspergillus fumigatus Mucin MsbA Regulates the Cell Wall Integrity Pathway and Controls Recognition of the Fungus by the Immune System

mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Isabella Luísa da Silva Gurgel ◽  
Karina Talita de Oliveira Santana Jorge ◽  
Nathália Luísa Sousa de Oliveira Malacco ◽  
Jéssica Amanda Marques Souza ◽  
Marina Campos Rocha ◽  
...  

ABSTRACT Aspergillus fumigatus is a filamentous fungus which causes invasive pulmonary aspergillosis in immunocompromised individuals. In fungi, cell signaling and cell wall plasticity are crucial for maintaining physiologic processes. In this context, Msb2 is an important signaling mucin responsible for activation of a variety of mitogen-activated protein kinase (MAPK)-dependent signaling pathways that regulate cell growth in several organisms, such as the cell wall integrity (CWI) pathway. Here, we aimed to characterize the MSB2 homologue in A. fumigatus. Our results showed that MsbA plays a role in the vegetative and reproductive development of the fungus, in stress adaptation, and in resistance to antifungal drugs by modulating the CWI pathway gene expression. Importantly, cell wall composition is also responsible for activation of diverse receptors of the host immune system, thus leading to a proper immune response. In a model of acute Aspergillus pulmonary infection, results demonstrate that the ΔmsbA mutant strain induced less inflammation with diminished cell influx into the lungs and lower cytokine production, culminating in increased lethality rate. These results characterize for the first time the role of the signaling mucin MsbA in the pathogen A. fumigatus, as a core sensor for cell wall morphogenesis and an important regulator of virulence. IMPORTANCE Aspergillus fumigatus is an opportunistic fungus with great medical importance. During infection, Aspergillus grows, forming hyphae that colonize the lung tissue and invade and spread over the mammal host, resulting in high mortality rates. The knowledge of the mechanisms responsible for regulation of fungal growth and virulence comprises an important point to better understand fungal physiology and host-pathogen interactions. Msb2 is a mucin that acts as a sensor and an upstream regulator of the MAPK pathway responsible for fungal development in Candida albicans and Aspergillus nidulans. Here, we show the role of the signaling mucin MsbA in the pathogen A. fumigatus, as a core sensor for cell wall morphogenesis, fungal growth, and virulence. Moreover, we show that cell wall composition, controlled by MsbA, is detrimental for fungal recognition and clearance by immune cells. Our findings are important for the understanding of how fungal sensors modulate cell physiology.

mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Tessa Keenan ◽  
Adam Dowle ◽  
Rachel Bates ◽  
Margaret C. M. Smith

ABSTRACTThe physiological role of protein O-glycosylation in prokaryotes is poorly understood due to our limited knowledge of the extent of their glycoproteomes. InActinobacteria, defects in protein O-mannosyl transferase (Pmt)-mediated protein O-glycosylation have been shown to significantly retard growth (Mycobacterium tuberculosisandCorynebacterium glutamicum) or result in increased sensitivities to cell wall-targeting antibiotics (Streptomyces coelicolor), suggesting that protein O-glycosylation has an important role in cell physiology. Only a single glycoprotein (SCO4142, or PstS) has been identified to date inS. coelicolor. Combining biochemical and mass spectrometry-based approaches, we have isolated and characterized the membrane glycoproteome inS. coelicolor. A total of ninety-five high-confidence glycopeptides were identified which mapped to thirty-seven newS. coelicolorglycoproteins and a deeper understanding of glycosylation sites in PstS. Glycosylation sites were found to be modified with up to three hexose residues, consistent with what has been observed previously in otherActinobacteria.S. coelicolorglycoproteins have diverse roles and functions, including solute binding, polysaccharide hydrolases, ABC transporters, and cell wall biosynthesis, the latter being of potential relevance to the antibiotic-sensitive phenotype ofpmtmutants. Null mutants in genes encoding a putatived-Ala-d-Ala carboxypeptidase (SCO4847) and anl,d-transpeptidase (SCO4934) were hypersensitive to cell wall-targeting antibiotics. Additionally, thesco4847mutants displayed an increased susceptibility to lysozyme treatment. These findings strongly suggest that both glycoproteins are required for maintaining cell wall integrity and that glycosylation could be affecting enzyme function.IMPORTANCEIn prokaryotes, the role of protein glycosylation is poorly understood due to our limited understanding of their glycoproteomes. In someActinobacteria, defects in protein O-glycosylation have been shown to retard growth and result in hypersensitivity to cell wall-targeting antibiotics, suggesting that this modification is important for maintaining cell wall structure. Here, we have characterized the glycoproteome inStreptomyces coelicolorand shown that glycoproteins have diverse roles, including those related to solute binding, ABC transporters, and cell wall biosynthesis. We have generated mutants encoding two putative cell wall-active glycoproteins and shown them to be hypersensitive to cell wall-targeting antibiotics. These findings strongly suggest that both glycoproteins are required for maintaining cell wall integrity and that glycosylation affects enzyme function.


2012 ◽  
Vol 12 (2) ◽  
pp. 288-298 ◽  
Author(s):  
Sweta Samantaray ◽  
Michael Neubauer ◽  
Christoph Helmschrott ◽  
Johannes Wagener

ABSTRACTAspergillus fumigatusis a mold and the causal agent of invasive aspergillosis, a systemic disease with high lethality. Recently, we identified and functionally characterized three stress sensors implicated in the cell wall integrity (CWI) signaling of this pathogen, namely, Wsc1, Wsc3, and MidA. Here, we functionally characterize Rom2, a guanine nucleotide exchange factor with essential function for the cell wall integrity ofA. fumigatus. A conditionalrom2mutant has severe growth defects under repressive conditions and incorporates all phenotypes of the three cell wall integrity sensor mutants, e.g., the echinocandin sensitivity of the Δwsc1mutant and the Congo red, calcofluor white, and heat sensitivity of the ΔmidAmutant. Rom2 interacts with Rho1 and shows a similar intracellular distribution focused at the hyphal tips. Our results place Rom2 between the cell surface stress sensors Wsc1, Wsc3, MidA, and Rho1 and their downstream effector mitogen-activated protein (MAP) kinase module Bck1-Mkk2-MpkA.


mSphere ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Eliciane Cevolani Mattos ◽  
Giuseppe Palmisano ◽  
Gustavo H. Goldman

ABSTRACT Aspergillus fumigatus is an opportunistic and allergenic pathogenic fungus, responsible for fungal infections in humans. A. fumigatus infections are usually treated with polyenes, azoles, or echinocandins. Echinocandins, such as caspofungin, can inhibit the biosynthesis of the β-1,3-glucan polysaccharide, affecting the integrity of the cell wall and leading to fungal death. In some A. fumigatus strains, caspofungin treatment at high concentrations induces an increase of fungal growth, a phenomenon called the caspofungin paradoxical effect (CPE). Here, we analyze the proteome and phosphoproteome of the A. fumigatus wild-type strain and of mitogen-activated protein kinase (MAPK) mpkA and sakA null mutant strains during CPE (2 μg/ml caspofungin for 1 h). The wild-type proteome showed 75 proteins and 814 phosphopeptides (corresponding to 520 proteins) altered in abundance in response to caspofungin treatment. The ΔmpkA (ΔmpkA caspofungin/wild-type caspofungin) and ΔsakA (ΔsakA caspofungin/wild-type caspofungin) strains displayed 626 proteins and 1,236 phosphopeptides (corresponding to 703 proteins) and 101 proteins and 1,217 phosphopeptides (corresponding to 645 proteins), respectively, altered in abundance. Functional characterization of the phosphopeptides from the wild-type strain exposed to caspofungin showed enrichment for transcription factors, protein kinases, and cytoskeleton proteins. Proteomic analysis of the ΔmpkA and ΔsakA mutants indicated that control of proteins involved in metabolism, such as in production of secondary metabolites, was highly represented in both mutants. Results of functional categorization of phosphopeptides from both mutants were very similar and showed a high number of proteins with decreased phosphorylation of proteins involved in transcriptional control, DNA/RNA binding, cell cycle control, and DNA processing. This report reveals novel transcription factors involved in caspofungin tolerance. IMPORTANCE Aspergillus fumigatus is an opportunistic human-pathogenic fungus causing allergic reactions or systemic infections, such as invasive pulmonary aspergillosis in immunocompromised patients. Caspofungin is an echinocandin that impacts the construction of the fungal cell wall by inhibiting the biosynthesis of the β-1,3-glucan polysaccharide. Caspofungin is a fungistatic drug and is recommended as a second-line therapy for treatment of aspergillosis. Treatment at high concentrations induces an increase of fungal growth, a phenomenon called the caspofungin paradoxical effect (CPE). Collaboration between the mitogen-activated protein kinases (MAPK) of the cell wall integrity (MapkA) and high-osmolarity glycerol (SakA) pathways is essential for CPE. Here, we investigate the global proteome and phosphoproteome of A. fumigatus wild-type, ΔmpkA, and ΔsakA strains upon CPE. This study showed intense cross talk between the two MAPKs for the CPE and identified novel protein kinases and transcription factors possibly important for CPE. Increased understanding of how the modulation of protein phosphorylation may affect the fungal growth in the presence of caspofungin represents an important step in the development of new strategies and methods to combat the fungus inside the host.


2012 ◽  
Vol 11 (11) ◽  
pp. 1324-1332 ◽  
Author(s):  
Frédéric Lamoth ◽  
Praveen R. Juvvadi ◽  
Jarrod R. Fortwendel ◽  
William J. Steinbach

ABSTRACTHeat shock protein 90 (Hsp90) is a eukaryotic molecular chaperone. Its involvement in the resistance ofCandida albicansto azole and echinocandin antifungals is well established. However, little is known about Hsp90's function in the filamentous fungal pathogenAspergillus fumigatus. We investigated the role of Hsp90 inA. fumigatusby genetic repression and examined its cellular localization under various stress conditions. Failure to generate a deletion strain ofhsp90suggested that it is essential. Genetic repression of Hsp90 was achieved by an inducible nitrogen-dependent promoter (pniiA-Hsp90) and led to decreased spore viability, decreased hyphal growth, and severe defects in germination and conidiation concomitant with the downregulation of the conidiation-specific transcription factorsbrlA,wetA, andabaA. Hsp90 repression potentiated the effect of cell wall inhibitors affecting the β-glucan structure of the cell wall (caspofungin, Congo red) and of the calcineurin inhibitor FK506, supporting a role in regulating cell wall integrity pathways. Moreover, compromising Hsp90 abolished the paradoxical effect of caspofungin. Pharmacological inhibition of Hsp90 by geldanamycin and its derivatives (17-AAG and 17-DMAG) resulted in similar effects. C-terminal green fluorescent protein (GFP) tagging of Hsp90 revealed mainly cytosolic distribution under standard growth conditions. However, treatment with caspofungin resulted in Hsp90 accumulation at the cell wall and at sites of septum formation, further highlighting its role in cell wall stress compensatory mechanisms. Targeting Hsp90 with fungal-specific inhibitors to cripple stress response compensatory pathways represents an attractive new antifungal strategy.


2015 ◽  
Vol 14 (8) ◽  
pp. 728-744 ◽  
Author(s):  
Vinícius Leite Pedro Bom ◽  
Patrícia Alves de Castro ◽  
Lizziane K. Winkelströter ◽  
Marçal Marine ◽  
Juliana I. Hori ◽  
...  

ABSTRACTAspergillus fumigatusis an opportunistic pathogenic fungus able to infect immunocompromised patients, eventually causing disseminated infections that are difficult to control and lead to high mortality rates. It is important to understand how the signaling pathways that regulate these factors involved in virulence are orchestrated. Protein phosphatases are central to numerous signal transduction pathways. Here, we characterize theA. fumigatusprotein phosphatase 2A SitA, theSaccharomyces cerevisiaeSit4p homologue. ThesitAgene is not an essential gene, and we were able to construct anA. fumigatusnull mutant. The ΔsitAstrain had decreased MpkA phosphorylation levels, was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and chitin, was impaired in biofilm formation, and had decreased protein kinase C activity. The ΔsitAstrain is more sensitive to several metals and ions, such as MnCl2, CaCl2, and LiCl, but it is more resistant to ZnSO4. The ΔsitAstrain was avirulent in a murine model of invasive pulmonary aspergillosis and induces an augmented tumor necrosis factor alpha (TNF-α) response in mouse macrophages. These results stress the importance ofA. fumigatusSitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3972 ◽  
Author(s):  
Katarzyna Złotko ◽  
Adrian Wiater ◽  
Adam Waśko ◽  
Małgorzata Pleszczyńska ◽  
Roman Paduch ◽  
...  

The cell walls of fungi are composed of glycoproteins, chitin, and α- and β-glucans. Although there are many reports on β-glucans, α-glucan polysaccharides are not yet fully understood. This review characterizes the physicochemical properties and functions of (1→3)-α-d-glucans. Particular attention has been paid to practical application and the effect of glucans in various respects, taking into account unfavourable effects and potential use. The role of α-glucans in plant infection has been proven, and collected facts have confirmed the characteristics of Aspergillus fumigatus infection associated with the presence of glucan in fungal cell wall. Like β-glucans, there are now evidence that α-glucans can also stimulate the immune system. Moreover, α-d-glucans have the ability to induce mutanases and can thus decompose plaque.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Lilian Pereira Silva ◽  
Dean Frawley ◽  
Leandro José de Assis ◽  
Ciara Tierney ◽  
Alastair B. Fleming ◽  
...  

ABSTRACT The high-osmolarity glycerol (HOG) response pathway is a multifunctional signal transduction pathway that specifically transmits ambient osmotic signals. Saccharomyces cerevisiae Hog1p has two upstream signaling branches, the sensor histidine kinase Sln1p and the receptor Sho1p. The Sho1p branch includes two other proteins, the Msb2p mucin and Opy2p. Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Here, we investigated the roles played by A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p putative homologues during the activation of the mitogen-activated protein kinase (MAPK) HOG pathway. The shoA, msbA, and opyA singly and doubly null mutants are important for the cell wall integrity (CWI) pathway, oxidative stress, and virulence as assessed by a Galleria mellonella model. Genetic interactions of ShoA, MsbA, and OpyA are also important for proper activation of the SakAHog1p and MpkASlt2 cascade and the response to osmotic and cell wall stresses. Comparative label-free quantitative proteomics analysis of the singly null mutants with the wild-type strain upon caspofungin exposure indicates that the absence of ShoA, MsbA, and OpyA affects the osmotic stress response, carbohydrate metabolism, and protein degradation. The putative receptor mutants showed altered trehalose and glycogen accumulation, suggesting a role for ShoA, MsbA, and OpyA in sugar storage. Protein kinase A activity was also decreased in these mutants. We also observed genetic interactions between SlnA, ShoA, MsbA, and OpyA, suggesting that both branches are important for activation of the HOG/CWI pathways. Our results help in the understanding of the activation and modulation of the HOG and CWI pathways in this important fungal pathogen. IMPORTANCE Aspergillus fumigatus is an important human-pathogenic fungal species that is responsible for a high incidence of infections in immunocompromised individuals. A. fumigatus high-osmolarity glycerol (HOG) and cell wall integrity pathways are important for the adaptation to different forms of environmental adversity such as osmotic and oxidative stresses, nutrient limitations, high temperatures, and other chemical and mechanical stresses that may be produced by the host immune system and antifungal drugs. Little is known about how these pathways are activated in this fungal pathogen. Here, we characterize four A. fumigatus putative homologues that are important for the activation of the yeast HOG pathway. A. fumigatus SlnASln1p, ShoASho1p, MsbAMsb2p, and OpyAOpy2p are genetically interacting and are essential for the activation of the HOG and cell wall integrity pathways. Our results contribute to the understanding of A. fumigatus adaptation to the host environment.


2010 ◽  
Vol 9 (3) ◽  
pp. 472-476 ◽  
Author(s):  
Nadthanan Pinchai ◽  
Praveen Rao Juvvadi ◽  
Jarrod R. Fortwendel ◽  
B. Zachary Perfect ◽  
Luise E. Rogg ◽  
...  

ABSTRACT The Aspergillus fumigatus ΔpmrA (Golgi apparatus Ca2+/Mn2+ P-type ATPase) strain has osmotically suppressible basal growth defects and cationic tolerance associated with increased expression of calcineurin pathway genes. Despite increased β-glucan and chitin content, it is hypersensitive to cell wall inhibitors but remains virulent, suggesting a role for PmrA in cation homeostasis and cell wall integrity.


2012 ◽  
Vol 11 (8) ◽  
pp. 966-977 ◽  
Author(s):  
Jarrod R. Fortwendel ◽  
Praveen R. Juvvadi ◽  
Luise E. Rogg ◽  
Yohannes G. Asfaw ◽  
Kimberlie A. Burns ◽  
...  

ABSTRACT Ras is a highly conserved GTPase protein that is essential for proper polarized morphogenesis of filamentous fungi. Localization of Ras proteins to the plasma membrane and endomembranes through posttranslational addition of farnesyl and palmitoyl residues is an important mechanism through which cells provide specificity to Ras signal output. Although the Aspergillus fumigatus RasA protein is known to be a major regulator of growth and development, the membrane distribution of RasA during polarized morphogenesis and the role of properly localized Ras signaling in virulence of a pathogenic mold remain unknown. Here we demonstrate that Aspergillus fumigatus RasA localizes primarily to the plasma membrane of actively growing hyphae. We show that treatment with the palmitoylation inhibitor 2-bromopalmitate disrupts normal RasA plasma membrane association and decreases hyphal growth. Targeted mutations of the highly conserved RasA palmitoylation motif also mislocalized RasA from the plasma membrane and led to severe hyphal abnormalities, cell wall structural changes, and reduced virulence in murine invasive aspergillosis. Finally, we provide evidence that proper RasA localization is independent of the Ras palmitoyltransferase homolog, encoded by erfB , but requires the palmitoyltransferase complex subunit, encoded by erfD . Our results demonstrate that plasma membrane-associated RasA is critical for polarized morphogenesis, cell wall stability, and virulence in A. fumigatus .


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Marina Campos Rocha ◽  
João Henrique Tadini Marilhano Fabri ◽  
Isabelle Taira Simões ◽  
Rafael Silva-Rocha ◽  
Daisuke Hagiwara ◽  
...  

ABSTRACT Aspergillus fumigatus is a major cause of human disease. The survival of this fungus is dependent on the cell wall organization and function of its components. The cell wall integrity pathway (CWIP) is the primary signaling cascade that controls de novo synthesis of the cell wall in fungi. Abundant conidiation is a hallmark in A. fumigatus, and uptake of conidia by a susceptible host is usually the initial event in infection. The formation of conidia is mediated by the development of fungus-specific specialized structures, conidiophores, which are accompanied by cell wall remodeling. The molecular regulation of these changes in cell wall composition required for the rise of conidiophore from the solid surface and to disperse the conidia into the air is currently unknown. Here, we investigated the role of CWIP in conidiation. We show that CWIP pkcAG579R, ΔmpkA, and ΔrlmA mutants displayed reduced conidiation during synchronized asexual differentiation. The transcription factor RlmA directly regulated the expression of regulators of conidiation, including flbB, flbC, brlA, abaA, and rasB, as well as genes involved in cell wall synthesis and remodeling, and this affected the chitin content in aerial hyphae. Phosphorylation of RlmA and MpkA was increased during asexual differentiation. We also observed that MpkA physically associated with the proteins FlbB, FlbC, BrlA, and RasB during this process, suggesting another level of cross talk between the CWIP and asexual development pathways. In summary, our results support the conclusion that one function of the CWIP is the regulation of asexual development in filamentous fungi. IMPORTANCE A remarkable feature of the human pathogen Aspergillus fumigatus is its ability to produce impressive amounts of infectious propagules known as conidia. These particles reach immunocompromised patients and may initiate a life-threatening mycosis. The conidiation process in Aspergillus is governed by a sequence of proteins that coordinate the development of conidiophores. This process requires the remodeling of the cell wall so that the conidiophores can rise and withstand the chains of conidia. The events regulating cell wall remodeling during conidiation are currently unknown. Here, we show that the cell wall integrity pathway (CWIP) components RlmA and MpkA directly contribute to the activation of the conidiation cascade by enabling transcription or phosphorylation of critical proteins involved in asexual development. This study points to an essential role for the CWIP during conidiation and provides further insights into the complex regulation of asexual development in filamentous fungi.


Sign in / Sign up

Export Citation Format

Share Document