scholarly journals Transcriptome Sequencing Reveals Novel Candidate Genes for Cardinium hertigii-Caused Cytoplasmic Incompatibility and Host-Cell Interaction

mSystems ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Evelyne Mann ◽  
Corinne M. Stouthamer ◽  
Suzanne E. Kelly ◽  
Monika Dzieciol ◽  
Martha S. Hunter ◽  
...  

ABSTRACT The majority of insects carry maternally inherited intracellular bacteria that are important in their hosts’ biology, ecology, and evolution. Some of these bacterial symbionts cause a reproductive failure known as cytoplasmic incompatibility (CI). In CI, the mating of symbiont-infected males and uninfected females produces few or no daughters. The CI symbiont then spreads and can have a significant impact on the insect host population. Cardinium, a bacterial endosymbiont of the parasitoid wasp Encarsia in the Bacteroidetes, is the only bacterial lineage known to cause CI outside the Alphaproteobacteria, where Wolbachia and another recently discovered CI symbiont reside. Here, we sought insight into the gene expression of a CI-inducing Cardinium strain in its natural host, Encarsia suzannae. Our study provides the first insights into the Cardinium transcriptome and provides support for the hypothesis that Wolbachia and Cardinium target similar host pathways with distinct and largely unrelated sets of genes. Cytoplasmic incompatibility (CI) is an intriguing, widespread, symbiont-induced reproductive failure that decreases offspring production of arthropods through crossing incompatibility of infected males with uninfected females or with females infected with a distinct symbiont genotype. For years, the molecular mechanism of CI remained unknown. Recent genomic, proteomic, biochemical, and cell biological studies have contributed to understanding of CI in the alphaproteobacterium Wolbachia and implicate genes associated with the WO prophage. Besides a recently discovered additional lineage of alphaproteobacterial symbionts only moderately related to Wolbachia, Cardinium (Bacteroidetes) is the only other symbiont known to cause CI, and genomic evidence suggests that it has very little homology with Wolbachia and evolved this phenotype independently. Here, we present the first transcriptomic study of the CI Cardinium strain cEper1, in its natural host, Encarsia suzannae, to detect important CI candidates and genes involved in the insect-Cardinium symbiosis. Highly expressed transcripts included genes involved in manipulating ubiquitination, apoptosis, and host DNA. Female-biased genes encoding ribosomal proteins suggest an increase in general translational activity of Cardinium in female wasps. The results confirm previous genomic analyses that indicated that Wolbachia and Cardinium utilize different genes to induce CI, and transcriptome patterns further highlight expression of some common pathways that these bacteria use to interact with the host and potentially cause this enigmatic and fundamental manipulation of host reproduction. IMPORTANCE The majority of insects carry maternally inherited intracellular bacteria that are important in their hosts’ biology, ecology, and evolution. Some of these bacterial symbionts cause a reproductive failure known as cytoplasmic incompatibility (CI). In CI, the mating of symbiont-infected males and uninfected females produces few or no daughters. The CI symbiont then spreads and can have a significant impact on the insect host population. Cardinium, a bacterial endosymbiont of the parasitoid wasp Encarsia in the Bacteroidetes, is the only bacterial lineage known to cause CI outside the Alphaproteobacteria, where Wolbachia and another recently discovered CI symbiont reside. Here, we sought insight into the gene expression of a CI-inducing Cardinium strain in its natural host, Encarsia suzannae. Our study provides the first insights into the Cardinium transcriptome and provides support for the hypothesis that Wolbachia and Cardinium target similar host pathways with distinct and largely unrelated sets of genes.

2018 ◽  
Author(s):  
Zeynab Bagheri ◽  
Ali Asghar Talebi ◽  
Sassan Asgari ◽  
Mohammad Mehrabadi

Wolbachia are common intracellular bacteria that are generally found in arthropods including a high proportion of insects and also some nematodes. This intracellular symbiont can affect sex ratio with a variety of reproductive anomalies in the host, including cytoplasmic incompatibility (CI) in haplodiploides. In this study, we questioned if the parasitoid wasp, Habrobracon hebetor (Hym.: Braconidae), which is one of the most important biological control agents of many lepidopteran larvae, is infected with Wolbachia. To test this, DNA was extracted from adult insects and subjected to PCR using specific primers to Wolbachia target genes. The results showed high rate of Wolbachia infection in this parasitoid wasp. To find out the biological function of Wolbachia in H. hebetor, we removed this bacterium from the wasps using antibiotic treatment (cured wasps). Results of the crossing experiments revealed that Wolbachia induced CI in H. hebetor in which cured females crossed with infected males produced only males, while in the progeny of other crosses, both males and females were observed. Also, our result showed that the presence of Wolbachia in the females increased fecundity and female offspring of this parasitoid wasp. However, the presence of Wolbachia in the males had no significant effect on the fecundity and female production, but might have incurred costs. We also investigated the effect of Wolbachia on mate choice and found that Wolbachia affects mating behavior of H. hebetor. Together, we show that Wolbachia induce CI in H. hebetor and affect host mating behavior in favor of its transmission. Wolbachia utilize these strategies to increase the frequency of infected females in the host population.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 851
Author(s):  
Chris Hoffmann ◽  
Stephanie Wurr ◽  
Elisa Pallasch ◽  
Sabrina Bockholt ◽  
Toni Rieger ◽  
...  

Natural hosts of most arenaviruses are rodents. The human-pathogenic Lassa virus and several non-pathogenic arenaviruses such as Morogoro virus (MORV) share the same host species, namely Mastomys natalensis (M. natalensis). In this study, we investigated the history of infection and virus transmission within the natural host population. To this end, we infected M. natalensis at different ages with MORV and measured the health status of the animals, virus load in blood and organs, the development of virus-specific antibodies, and the ability of the infected individuals to transmit the virus. To explore the impact of the lack of evolutionary virus–host adaptation, experiments were also conducted with Mobala virus (MOBV), which does not share M. natalensis as a natural host. Animals infected with MORV up to two weeks after birth developed persistent infection, seroconverted and were able to transmit the virus horizontally. Animals older than two weeks at the time of infection rapidly cleared the virus. In contrast, MOBV-infected neonates neither developed persistent infection nor were able to transmit the virus. In conclusion, we demonstrate that MORV is able to develop persistent infection in its natural host, but only after inoculation shortly after birth. A related arenavirus that is not evolutionarily adapted to M. natalensis is not able to establish persistent infection. Persistently infected animals appear to be important to maintain virus transmission within the host population.


2019 ◽  
Author(s):  
Shivanand Hegde ◽  
Denis Voronin ◽  
Aitor Casas-Sanchez ◽  
Miguel A. Saldaña ◽  
Eva Heinz ◽  
...  

AbstractMicrobiota within mosquitoes influence nutrition, immunity, fecundity, and the capacity to transmit pathogens. Despite their importance, we have a limited understanding of host-microbiota interactions, especially at the cellular level. It is evident bacterial symbionts that are localized within the midgut also infect other organs within the mosquito; however, the route these symbionts take to colonize other tissues is unknown. Here, utilizing the gentamicin protection assay, we showed that the bacterial symbionts Cedecea and Serratia have the capacity to invade and reside intracellularly within mosquito cells. Symbiotic bacteria were found within a vacuole and bacterial replication was observed in mosquito cell by transmission electron microscopy, indicating bacteria were adapted to the intracellular milieu. Using gene silencing, we determined that bacteria exploited host factors, including actin and integrin receptors, to actively invade mosquito cells. As microbiota can affect pathogens within mosquitoes, we examined the influence of intracellular symbionts on Zika virus (ZIKV) infection. Mosquito cells harbouring intracellular bacteria had significantly less ZIKV compared to uninfected cells or cells exposed to non-invasive bacteria. Intracellular bacteria were observed to substantially upregulate the Toll and IMD innate immune pathways, providing a possible mechanism mediating these anti-viral effects. Examining mono-axenically infected mosquitoes using transmission electron and fluorescent microscopy revealed that bacteria occupied an intracellular niche in vivo. Our results provided evidence that bacteria that associate with the midgut of mosquitoes have intracellular lifestyles which likely have implications for mosquito biology and pathogen infection. This study expands our understanding of host-microbiota interactions in mosquitoes, which is important as symbiont microbes are being exploited for vector control strategies.


2019 ◽  
Vol 63 (8-9-10) ◽  
pp. 371-382
Author(s):  
James M. Medina ◽  
P.M. Shreenidhi ◽  
Tyler J. Larsen ◽  
David C. Queller ◽  
Joan E. Strassmann

The social amoeba Dictyostelium discoideum has provided considerable insight into the evolution of cooperation and conflict. Under starvation, D. discoideum amoebas cooperate to form a fruiting body comprised of hardy spores atop a stalk. The stalk development is altruistic because stalk cells die to aid spore dispersal. The high relatedness of cells in fruiting bodies in nature implies that this altruism often benefits relatives. However, since the fruiting body forms through aggregation there is potential for non-relatives to join the aggregate and create conflict over spore and stalk fates. Cheating is common in chimeras of social amoebas, where one genotype often takes advantage of the other and makes more spores. This social conflict is a significant force in nature as indicated by rapid rates of adaptive evolution in genes involved in cheating and its resistance. However, cheating can be prevented by high relatedness, allorecognition via tgr genes, pleiotropy and evolved resistance. Future avenues for the study of cooperation and conflict in D. discoideum include the sexual cycle as well as the relationship between D. discoideum and its bacterial symbionts. D. discoideum’s tractability in the laboratory as well as its uncommon mode of aggregative multicellularity have established it as a promising model for future studies of cooperation and conflict.


2016 ◽  
Vol 107 (2) ◽  
pp. 139-147 ◽  
Author(s):  
P.A. Eliopoulos ◽  
A. Kapranas ◽  
E.G. Givropoulou ◽  
I.C.W. Hardy

AbstractThe parasitoid waspCephalonomia tarsalis(Ashmead) (Hymenoptera: Bethylidae) is commonly present in stored product facilities. While beneficial, it does not provide a high degree of biological pest control against its host, the saw-toothed beetleOryzaephilus surinamensis(L.) (Coleoptera: Silvanidae). A candidate explanation for poor host population suppression is that adult females interfere with each other's foraging and reproductive behavior. We used simple laboratory microcosms to evaluate such mutual interference in terms of its overall effects on offspring production. We varied the density of the hosts and also the spatial structure of the environment, via the extent of population sub-division and the provision of different substrates. Production ofC. tarsalisoffspring was positively influenced by host density and by the isolation of females. With incomplete sub-division within microcosms offspring production was, in contrast, low and even zero. The provision of corrugated paper as a substrate enhanced offspring production and partially mitigated the effects of mutual interference. We recommend simple improvements to mass rearing practice and identify promising areas for further behavioral and chemical studies towards a better understanding of the mechanisms of mutual interference.


2001 ◽  
Vol 356 (1411) ◽  
pp. 1001-1012 ◽  
Author(s):  
A. Dobson ◽  
J. Foufopoulos

The first part of this paper surveys emerging pathogens of wildlife recorded on the ProMED Web site for a 2–year period between 1998 and 2000. The majority of pathogens recorded as causing disease outbreaks in wildlife were viral in origin. Anthropogenic activities caused the outbreaks in a significant majority of cases. The second part of the paper develops some matrix models for quantifying the basic reproductive number, R 0 , for a variety of potential types of emergent pathogen that cause outbreaks in wildlife. These analyses emphasize the sensitivity of R 0 to heterogeneities created by either the spatial structure of the host population, or the ability of the pathogens to utilize multiple host species. At each stage we illustrate how the approach provides insight into the initial dynamics of emergent pathogens such as canine parvovirus, Lyme disease, and West Nile virus in the United States.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Elisabeth Fichet-Calvet ◽  
Stephan Ölschläger ◽  
Thomas Strecker ◽  
Lamine Koivogui ◽  
Beate Becker-Ziaja ◽  
...  

2012 ◽  
Vol 42 (10) ◽  
pp. 931-938 ◽  
Author(s):  
Richard Tinsley ◽  
Lucy Stott ◽  
Jenny York ◽  
Amy Everard ◽  
Sara Chapple ◽  
...  

2016 ◽  
Author(s):  
Arielle Woznica ◽  
Alexandra M. Cantley ◽  
Christine Beemelmanns ◽  
Elizaveta Freinkman ◽  
Jon Clardy ◽  
...  

AbstractIn choanoflagellates, the closest living relatives of animals, multicellular “rosette” development is regulated by environmental bacteria. The simplicity of this evolutionarily-relevant interaction provides an opportunity to identify the molecules and regulatory logic underpinning bacterial regulation of development. We find that the rosette-inducing bacterium Algoriphagus machipongonensis produces three structurally divergent classes of bioactive lipids that, together, activate, enhance, and inhibit rosette development in the choanoflagellate S. rosetta. One class of molecules, the lysophosphatidylethanolamines (LPEs), elicits no response on its own, but synergizes with activating sulfonolipid rosette inducing factors (RIFs) to recapitulate the full bioactivity of live Algoriphagus. LPEs, while ubiquitous in bacteria and eukaryotes, have not previously been implicated in the regulation of a host-microbe interaction. This study reveals that multiple bacterially-produced lipids converge to activate, enhance, and inhibit multicellular development in a choanoflagellate.Significance StatementBacterial symbionts profoundly influence the biology of their animal hosts, yet complex interactions between animals and their resident bacteria often make it challenging to characterize the molecules and mechanisms. Simple model systems can reveal fundamental processes underlying interactions between eukaryotes and their associated microbial communities, and provide insight into how bacteria regulate animal biology. In this study we isolate and characterize bacterial molecules that regulate multicellular development in the closest living relatives of animals, the choanoflagellate. We find that multiple bacterially-derived lipids converge to activate, enhance, and inhibit choanoflagellate multicellular development.


Sign in / Sign up

Export Citation Format

Share Document