scholarly journals Space Is More Important than Season when Shaping Soil Microbial Communities at a Large Spatial Scale

mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Kaoping Zhang ◽  
Manuel Delgado-Baquerizo ◽  
Yong-Guan Zhu ◽  
Haiyan Chu

ABSTRACT The relative importance of spatial and temporal variability in shaping the distribution of soil microbial communities at a large spatial scale remains poorly understood. Here, we explored the relative importance of space versus time when predicting the distribution of soil bacterial and fungal communities across North China Plain in two contrasting seasons (summer versus winter). Although we found that microbial alpha (number of phylotypes) and beta (changes in community composition) diversities differed significantly between summer and winter, space rather than season explained more of the spatiotemporal variation of soil microbial alpha and beta diversities. Environmental covariates explained some of microbial spatiotemporal variation observed, with fast-changing environmental covariates—climate variables, soil moisture, and available nutrient—likely being the main factors that drove the seasonal variation found in bacterial and fungal beta diversities. Using random forest modeling, we further identified a group of microbial exact sequence variants (ESVs) as indicators of summer and winter seasons and for which relative abundance was associated with fast-changing environmental variables (e.g., soil moisture and dissolved organic nitrogen). Together, our empirical field study’s results suggest soil microbial seasonal variation could arise from the changes of fast-changing environmental variables, thus providing integral support to the large emerging body of snapshot studies related to microbial biogeography. IMPORTANCE Both space and time are key factors that regulate microbial community, but microbial temporal variation is often ignored at a large spatial scale. In this study, we compared spatial and seasonal effects on bacterial and fungal diversity variation across an 878-km transect and found direct evidence that space is far more important than season in regulating the soil microbial community. Partitioning the effect of season, space and environmental variables on microbial community, we further found that fast-changing environmental factors contributed to microbial temporal variation.

2008 ◽  
Vol 38 (6) ◽  
pp. 1504-1516 ◽  
Author(s):  
Lisbet Holm Bach ◽  
Åsa Frostegård ◽  
Mikael Ohlson

We investigated soil microbial community structure by phospholipid fatty acid (PLFA) analysis in a mature boreal spruce forest landscape in southern Norway, with low diversity of vascular plants. We investigated the spatial variation in PLFAs and the importance of environmental variables in 10 plots (each 13 samples) in a study area of 1 km × 1 km. The scales investigated were 15 cm to 10 m within study plots and 100 m to 1 km between study plots. Soil microbial biomass varied 10-fold and we found a large variation in microbial community structure, even at distances of 15 cm. Samples aggregated into plots when PLFAs were subjected to a principal components analysis. Plot identity explained 36.3% of the variation in the PLFAs and geostatistical analysis showed that the microbial community structure displayed spatial dependence at within-plot distances. Environmental variables differed significantly between all plots but explained only minor parts of the variation in the overall PLFA pattern. The vegetation variables were, however, the best at explaining the PLFA pattern, and up to 60% of within-plot variation in individual plots, respectively, could be explained by vegetation variables, pH, and soil depth.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 173
Author(s):  
Huiling Guan ◽  
Jiangwen Fan ◽  
Haiyan Zhang ◽  
Warwick Harris

Soil erosion is prevalent in karst areas, but few studies have compared the differences in the drivers for soil microbial communities among karst ecosystems with different soil depths, and most studies have focused on the local scale. To fill this research gap, we investigated the upper 20 cm soil layers of 10 shallow–soil depth (shallow–SDC, total soil depth less than 100 cm) and 11 deep–soil depth communities (deep–SDC, total soil depth more than 100 cm), covering a broad range of vegetation types, soils, and climates. The microbial community characteristics of both the shallow–SDC and deep–SDC soils were tested by phospholipid fatty acid (PLFAs) analysis, and the key drivers of the microbial communities were illustrated by forward selection and variance partitioning analysis. Our findings demonstrated that more abundant soil nutrients supported higher fungal PLFA in shallow–SDC than in deep–SDC (p < 0.05). Furthermore, stronger correlation between the microbial community and the plant–soil system was found in shallow–SDC: the pure plant effect explained the 43.2% of variance in microbial biomass and 57.8% of the variance in the ratio of Gram–positive bacteria to Gram–negative bacteria (G+/G−), and the ratio of fungi to total bacteria (F/B); the pure soil effect accounted for 68.6% variance in the microbial diversity. The ratio of microbial PLFA cyclopropyl to precursors (Cy/Pr) and the ratio of saturated PLFA to monounsaturated PLFA (S/M) as indicators of microbial stress were controlled by pH, but high pH was not conducive to microorganisms in this area. Meanwhile, Cy/Pr in all communities was >0.1, indicating that microorganisms were under environmental stress. Therefore, the further ecological restoration of degraded karst communities is needed to improve their microbial communities.


2015 ◽  
Vol 12 (13) ◽  
pp. 10359-10387 ◽  
Author(s):  
W. Y. Dong ◽  
X. Y. Zhang ◽  
X. Y. Liu ◽  
X. L. Fu ◽  
F. S. Chen ◽  
...  

Abstract. Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-Glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the PLFA abundanceespecially in the N2P treatment, the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK. Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. There were also significant relationships between gram-positive (G+) bacteria and all three soil enzymes. These findings indicate that G+ bacteria is the most important microbial community in C, N, and P transformations in Chinese fir plantations, and that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.


2021 ◽  
Vol 18 (23) ◽  
pp. 6133-6146
Author(s):  
Hao Tang ◽  
Susanne Liebner ◽  
Svenja Reents ◽  
Stefanie Nolte ◽  
Kai Jensen ◽  
...  

Abstract. Climate change can strongly alter soil microbial functioning via plant–microbe interactions, often with important consequences for ecosystem carbon and nutrient cycling. Given the high degree of intraspecific trait variability in plants, it has been hypothesized that genetic shifts within plant species yield a large potential to control the response of plant–microbe interactions to climate change. Here we examined if sea-level rise and plant genotype interact to affect soil microbial communities in an experimental coastal wetland system, using two known genotypes of the dominant salt-marsh grass Elymus athericus characterized by differences in their sensitivity to flooding stress – i.e., a tolerant genotype from low-marsh environments and an intolerant genotype from high-marsh environments. Plants were exposed to a large range of flooding frequencies in a factorial mesocosm experiment, and soil microbial activity parameters (exo-enzyme activity and litter breakdown) and microbial community structure were assessed. Plant genotype mediated the effect of flooding on soil microbial community structure and determined the presence of flooding effects on exo-enzyme activities and belowground litter breakdown. Larger variability in microbial community structure, enzyme activities, and litter breakdown in soils planted with the intolerant plant genotype supported our general hypothesis that effects of climate change on soil microbial activity and community structure can depend on plant intraspecific genetic variation. In conclusion, our data suggest that adaptive genetic variation in plants could suppress or facilitate the effects of sea-level rise on soil microbial communities. If this finding applies more generally to coastal wetlands, it yields important implications for our understanding of ecosystem–climate feedbacks in the coastal zone.


el–Hayah ◽  
2012 ◽  
Vol 1 (4) ◽  
Author(s):  
Prihastuti Prihastuti

<p>Soils are made up of organic and an organic material. The organic soil component contains all the living creatures in the soil and the dead ones in various stages of decomposition.  Biological activity in soil helps to recycle nutrients, decompose organic matter making nutrient available for plant uptake, stabilize humus, and form soil particles.<br />The extent of the diversity of microbial in soil is seen to be critical to the maintenance of soil health and quality, as a wide range of microbial is involved in important soil functions.  That ecologically managed soils have a greater quantity and diversity of soil microbial. The two main drivers of soil microbial community structure, i.e., plant type and soil type, are thought to exert their function in a complex manner. The fact that in some situations the soil and in others the plant type is the key factor determining soil microbial diversity is related to their complexity of the microbial interactions in soil, including interactions between microbial and soil and microbial and plants. <br />The basic premise of organic soil stewardship is that all plant nutrients are present in the soil by maintaining a biologically active soil environment. The diversity of microbial communities has on ecological function and resilience to disturbances in soil ecosystems. Relationships are often observed between the extent of microbial diversity in soil, soil and plant quality and ecosystem sustainability. Agricultural management can be directed toward maximizing the quality of the soil microbial community in terms of disease suppression, if it is possible to shift soil microbial communities.</p><p>Keywords: structure, microbial, implication, sustainable agriculture<br /><br /></p>


2021 ◽  
Author(s):  
Dajana Radujković ◽  
Sara Vicca ◽  
Margaretha van Rooyen ◽  
Peter Wilfahrt ◽  
Leslie Brown ◽  
...  

Environmental circumstances shaping soil microbial communities have been studied extensively, but due to disparate study designs it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 sampled across regional plant productivity gradients) to examine i) if the same abiotic or biotic factors predict both large- and regional-scale patterns in bacterial and fungal community composition, and ii) if microbial community composition differs consistently with regional plant productivity (low vs high) across different sites. We found that there is high congruence between predictors of microbial community composition across spatial scales; bacteria were predominantly associated with soil properties and fungi with plant community composition. Moreover, there was a microbial community signal that clearly distinguished high and low productivity soils that was shared across worldwide distributed grasslands suggesting that microbial assemblages vary predictably depending on grassland productivity.


2021 ◽  
Author(s):  
Alin Song ◽  
Zimin Li ◽  
Fenliang Fan

&lt;p&gt;Returning crop straw into soil is an important practice to balance biogenic and bioavailable silicon (Si) pool in paddy, which is crucial for rice healthy growth. However, it remains elusive how straw return affects Si bioavailability, its uptake, and rice yield, owing to little knowledge about soil microbial communities responsible for straw degradation. Here, we investigated the change of soil Si fractions and microbial community in a 39-year-old paddy field amended by a long-term straw return. Results showed that rice straw-return significantly increased soil bioavailable Si and rice yield to from 29.9% to 61.6% and from 14.5% to 23.6%, respectively, compared to NPK fertilization alone. Straw return significantly altered soil microbial community abundance. Acidobacteria was positively and significantly related to amorphous Si, while Rokubacteria at the phylum level, Deltaproteobacteria and Holophagae at the class level were negatively and significantly related to organic matter adsorbed and Fe/Mn-oxide combined Si in soils. Redundancy analysis of their correlations further demonstrated that Si status significantly explained 12% of soil bacterial community variation. These findings suggest that soil bacteria community and diversity interact with Si mobility via altering its transformation, resulting in the balance of various nutrient sources to drive biological silicon cycle in agroecosystem.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document