scholarly journals Kinetic Analysis of Acanthamoeba castellanii Infected with Giant Viruses Quantitatively Revealed Process of Morphological and Behavioral Changes in Host Cells

Author(s):  
Sho Fukaya ◽  
Masaharu Takemura

Quantitative analysis of the infection process is important for a better understanding of viral infection strategies and virus-host interactions. Here, an image analysis of the phase-contrast time-lapse movies displayed quantitative differences in the process of cytopathic effects due to the four giant viruses in Acanthamoeba castellanii , which were previously unclear.

2014 ◽  
Vol 83 (3) ◽  
pp. 1008-1018 ◽  
Author(s):  
Felizza F. Gunderson ◽  
Celeste A. Mallama ◽  
Stephanie G. Fairbairn ◽  
Nicholas P. Cianciotto

Legionella pneumophila, the primary agent of Legionnaires' disease, flourishes in both natural and man-made environments by growing in a wide variety of aquatic amoebae. Recently, we determined that the Cas2 protein ofL. pneumophilapromotes intracellular infection ofAcanthamoeba castellaniiandHartmannella vermiformis, the two amoebae most commonly linked to cases of disease. The Cas2 family of proteins is best known for its role in the bacterial and archeal clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) system that constitutes a form of adaptive immunity against phage and plasmid. However, the infection event mediated byL. pneumophilaCas2 appeared to be distinct from this function, becausecas2mutants exhibited infectivity defects in the absence of added phage or plasmid and since mutants lacking the CRISPR array or any one of the othercasgenes were not impaired in infection ability. We now report that the Cas2 protein ofL. pneumophilahas both RNase and DNase activities, with the RNase activity being more pronounced. By characterizing a catalytically deficient version of Cas2, we determined that nuclease activity is critical for promoting infection of amoebae. Also, introduction of Cas2, but not its catalytic mutant form, into a strain ofL. pneumophilathat naturally lacks a CRISPR-Cas locus caused that strain to be 40- to 80-fold more infective for amoebae, unequivocally demonstrating that Cas2 facilitates the infection process independently of any other component encoded within the CRISPR-Cas locus. Finally, acas2mutant was impaired for infection ofWillaertia magnabut notNaegleria lovaniensis, suggesting that Cas2 promotes infection of most but not all amoebal hosts.


2020 ◽  
Author(s):  
Lee Dolat ◽  
Raphael H. Valdivia

ABSTRACTOur understanding of how the obligate intracellular bacterium Chlamydia trachomatis reprograms the cell biology of host cells in the upper genital tract is largely based on observations made in cell culture with transformed epithelial cell lines. Here we describe a primary spherical organoid system derived from endometrial tissue to recapitulate epithelial cell diversity, polarity, and ensuing responses to Chlamydia infection. Using high-resolution and time-lapse microscopy, we catalogue the infection process in organoids from invasion to egress, including the reorganization of the cytoskeleton and positioning of intracellular organelles. We show this model is amenable to screening C. trachomatis mutants for defects in the fusion of pathogenic vacuoles, the recruitment of intracellular organelles, and inhibition of cell death. Moreover, we reconstructed a primary immune cell response by co-culturing infected organoids with neutrophils, and determined that the effector TepP limits the recruitment of neutrophils to infected organoids. Collectively, our model details a system to study the cell biology of Chlamydia infections in three dimensional structures that better reflect the diversity of cell types and polarity encountered by Chlamydia upon infection of their animal hosts.Summary statement3D endometrial organoids to model Chlamydia infection and the role of secreted virulence factors in reprogramming host epithelial cells and immune cell recruitment


2012 ◽  
Vol 80 (7) ◽  
pp. 2548-2557 ◽  
Author(s):  
Soudeh Ehsani ◽  
José Carlos Santos ◽  
Cristina D. Rodrigues ◽  
Ricardo Henriques ◽  
Laurent Audry ◽  
...  

ABSTRACTShigella flexneri, the causative agent of bacillary dysentery, induces massive cytoskeletal rearrangement, resulting in its entry into nonphagocytic epithelial cells. The bacterium-engulfing membrane ruffles are formed by polymerizing actin, a process activated through injected bacterial effectors that target host small GTPases and tyrosine kinases. Once inside the host cell,S. flexneriescapes from the endocytic vacuole within minutes to move intra- and intercellularly. We quantified the fluorescence signals from fluorescently tagged host factors that are recruited to the site of pathogen entry and vacuolar escape. Quantitative time lapse fluorescence imaging revealed simultaneous recruitment of polymerizing actin, small GTPases of the Rho family, and tyrosine kinases. In contrast, we found that actin surrounding the vacuole containing bacteria dispersed first from the disassembling membranes, whereas other host factors remained colocalized with the membrane remnants. Furthermore, we found that the disassembly of the membrane remnants took place rapidly, within minutes after bacterial release into the cytoplasm. Superresolution visualization of galectin 3 through photoactivated localization microscopy characterized these remnants as small, specular, patchy structures between 30 and 300 nm in diameter. Using our experimental setup to track the time course of infection, we identified theS. flexnerieffector IpgB1 as an accelerator of the infection pace, specifically targeting the entry step, but not vacuolar progression or escape. Together, our studies show that bacterial entry into host cells follows precise kinetics and that this time course can be targeted by the pathogen.


Parasitology ◽  
2013 ◽  
Vol 141 (4) ◽  
pp. 531-541 ◽  
Author(s):  
K. J. SOTO-ARREDONDO ◽  
L. L. FLORES-VILLAVICENCIO ◽  
J. J. SERRANO-LUNA ◽  
M. SHIBAYAMA ◽  
M. SABANERO-LÓPEZ

SUMMARYFree-living amoebae belonging to the genusAcanthamoebaare the causative agents of infections such as amoebic keratitis (AK), granulomatous amoebic encephalitis (GAE) and cutaneous lesions. The mechanisms involved in the establishment of infection are unknown. However, it is accepted that the initial phase of pathogenesis involves adherence to the host tissue. In this work, we analysed surface molecules with an affinity for epithelial and neuronal cells from the trophozoites ofAcanthamoeba castellanii. We also investigated the cellular mechanisms that govern the process of trophozoite adhesion to the host cells. We first used confocal and epifluorescence microscopy to examine the distribution of theA. castellaniiactin cytoskeleton during interaction with the host cells. The use of drugs, as cytochalasin B (CB) and latrunculin B (LB), revealed the participation of cytoskeletal filaments in the adhesion process. In addition, to identify the proteins and glycoproteins on the surface ofA. castellanii, the trophozoites were labelled with biotin and biotinylated lectins. The results revealed bands of surface proteins, some of which were glycoproteins with mannose andN-acetylglucosamine residues. Interaction assays of biotinylated amoebae proteins with epithelial and neuronal cells showed that some surface proteins had affinity for both cell types. The results of this study provide insight into the biochemical and cellular mechanisms of theAcanthamoebainfection process.


2014 ◽  
Vol 82 (5) ◽  
pp. 2059-2067 ◽  
Author(s):  
Sabriya A. Stukes ◽  
Hillel W. Cohen ◽  
Arturo Casadevall

ABSTRACTCryptococcus neoformansis a facultative intracellular pathogen and the causative agent of cryptococcosis, a disease that is often fatal to those with compromised immune systems.C. neoformanshas the capacity to escape phagocytic cells through a process known as nonlytic exocytosis whereby the cryptococcal cell is released from the macrophage into the extracellular environment, leaving both the host and pathogen alive. Little is known about the mechanism behind nonlytic exocytosis, but there is evidence that both the fungal and host cells contribute to the process. In this study, we used time-lapse movies ofC. neoformans-infected macrophages to delineate the kinetics and quantitative aspects of nonlytic exocytosis. We analyzed approximately 800 macrophages containing intracellularC. neoformansand identified 163 nonlytic exocytosis events that were further characterized into three subcategories: type I (complete emptying of macrophage), type II (partial emptying of macrophage), and type III (cell-to-cell transfer). The majority of type I and II events occurred after several hours of intracellular residence, whereas type III events occurred significantly (P< 0.001) earlier in the course of macrophage infection. Our results show that nonlytic exocytosis is a morphologically and temporally diverse process that occurs relatively rapidly in the course of macrophage infection.


1999 ◽  
Vol 1 (10) ◽  
pp. 1-16
Author(s):  
Geoffrey L. Smith ◽  
Christopher M. Sanderson

Viruses replicate inside host cells, where they use host biochemical and structural components to facilitate the production of new virus particles. As a consequence of co-evolution with their hosts, viruses have acquired host genes and genetic mutations that confer dominance over normal cell function. Research on virus–cell interactions has focused on the identification of mechanisms of virus dominance in order to develop therapeutic strategies for preventing productive infection. Although such research remains an essential part of molecular virology, viruses are also important genetic tools that can be used to analyse cell function. Because virus genomes contain genetic information, some of which was derived from host cells, it is possible that the analyses of virus–host interactions might lead to the identification of functionally dominant virus genes and novel eukaryotic counterparts. In this article, we have described how transforming and non-transforming viruses can control cell motility (cell migration or membrane projection), and explained how the analysis of virus cytopathic effects (CPEs) led to the identification of a novel family of cellular genes that regulate diverse aspects of cell motility.


2015 ◽  
Vol 81 (13) ◽  
pp. 4489-4497 ◽  
Author(s):  
Demeng Tan ◽  
Amalie Dahl ◽  
Mathias Middelboe

ABSTRACTVibrio anguillarumis an important pathogen in marine aquaculture, responsible for vibriosis. Bacteriophages can potentially be used to control bacterial pathogens; however, successful application of phages requires a detailed understanding of phage-host interactions under both free-living and surface-associated growth conditions. In this study, we exploredin vitrophage-host interactions in two different strains ofV. anguillarum(BA35 and PF430-3) during growth in microcolonies, biofilms, and free-living cells. Two vibriophages, ΦH20 (Siphoviridae) and KVP40 (Myoviridae), had completely different effects on the biofilm development. Addition of phage ΦH20 to strain BA35 showed efficient control of biofilm formation and density of free-living cells. The interactions between BA35 and ΦH20 were thus characterized by a strong phage control of the phage-sensitive population and subsequent selection for phage-resistant mutants. Addition of phage KVP40 to strain PF430-3 resulted in increased biofilm development, especially during the early stage. Subsequent experiments in liquid cultures showed that addition of phage KVP40 stimulated the aggregation of host cells, which protected the cells against phage infection. By the formation of biofilms, strain PF430-3 created spatial refuges that protected the host from phage infection and allowed coexistence between phage-sensitive cells and lytic phage KVP40. Together, the results demonstrate highly variable phage protection mechanisms in two closely relatedV. anguillarumstrains, thus emphasizing the challenges of using phages to control vibriosis in aquaculture and adding to the complex roles of phages as drivers of prokaryotic diversity and population dynamics.


2015 ◽  
Vol 59 (6) ◽  
pp. 3031-3041 ◽  
Author(s):  
Yousuf Aqeel ◽  
Ruqaiyyah Siddiqui ◽  
Ayaz Anwar ◽  
Muhammad Raza Shah ◽  
Shahrukh Khoja ◽  
...  

ABSTRACTAcanthamoebais a protist pathogen that can cause serious human infections, including blinding keratitis and a granulomatous amoebic encephalitis that almost always results in death. The current treatment for these infections includes a mixture of drugs, and even then, a recurrence can occur. Photochemotherapy has shown promise in the treatment ofAcanthamoebainfections; however, the selective targeting of pathogenicAcanthamoebahas remained a major concern. The mannose-binding protein is an important adhesin expressed on the surface membranes of pathogenicAcanthamoebaorganisms. To specifically targetAcanthamoeba, the overall aim of this study was to synthesize a photosensitizing compound (porphyrin) conjugated with mannose and test its efficacyin vitro. The synthesis of mannose-conjugated porphyrin was achieved by mixing benzaldehyde and pyrrole, yielding tetraphenylporphyrin. Tetraphenylporphyrin was then converted into mono-nitrophenylporphyrin by selectively nitrating theparaposition of the phenyl rings, as confirmed by nuclear magnetic resonance (NMR) spectroscopy. The mono-nitrophenylporphyrin was reduced to mono-aminophenylporphyrin in the presence of tin dichloride and confirmed by a peak atm/z629. Finally, mono-aminoporphyrin was conjugated with mannose, resulting in the formation of an imine bond. Mannose-conjugated porphyrin was confirmed through spectroscopic analysis and showed that it absorbed light of wavelengths ranging from 425 to 475 nm. To determine the antiacanthamoebic effects of the derived product, amoebae were incubated with mannose-conjugated porphyrin for 1 h and washed 3 times to remove extracellular compound. Next, the amoebae were exposed to light of the appropriate wavelength for 1 h. The results revealed that mannose-conjugated porphyrin produced potent trophicidal effects and blocked excystation. In contrast,Acanthamoeba castellaniiincubated with mannose alone and porphyrin alone did not exhibit an antiamoebic effect. Consistently, pretreatment with mannose-conjugated porphyrin reduced theA. castellanii-mediated host cell cytotoxicity from 97% to 4.9%. In contrast, treatment with porphyrin, mannose, or solvent alone had no protective effects on the host cells. These data suggest that mannose-conjugated porphyrin has application for the targeted photodynamic therapy ofAcanthamoebainfections and may serve as a model in the development of therapeutic interventions against other eukaryotic infections.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Stefan Otte ◽  
Emiliano Perez Ipiña ◽  
Rodolphe Pontier-Bres ◽  
Dorota Czerucka ◽  
Fernando Peruani

AbstractA crucial phase in the infection process, which remains poorly understood, is the localization of suitable host cells by bacteria. It is often assumed that chemotaxis plays a key role during this phase. Here, we report a quantitative study on how Salmonella Typhimurium search for T84 human colonic epithelial cells. Combining time-lapse microscopy and mathematical modeling, we show that bacteria can be described as chiral active particles with strong active speed fluctuations, which are of biological, as opposed to thermal, origin. We observe that there exists a giant range of inter-individual variability of the bacterial exploring capacity. Furthermore, we find Salmonella Typhimurium does not exhibit biased motion towards the cells and show that the search time statistics is consistent with a random search strategy. Our results indicate that in vitro localization of host cells, and also cell infection, are random processes, not involving chemotaxis, that strongly depend on bacterial motility parameters.


2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Hae-Ahm Lee ◽  
So-Min Park ◽  
Ki-Back Chu ◽  
Fu-Shi Quan ◽  
Thomas Kurz ◽  
...  

ABSTRACT Treatment of Acanthamoeba keratitis (AK) is difficult because Acanthamoeba cysts are resistant to drugs, and as such, successful treatment requires an effective approach that inhibits cyst formation. Histone deacetylase inhibitors (HDACis) are involved in cell proliferation, differentiation, and apoptotic cell death. In this study, the effects of HDACis such as MPK472 and KSK64 on Acanthamoeba castellanii trophozoites and cysts were observed. MPK472 and KSK64 showed at least 60% amoebicidal activity against Acanthamoeba trophozoites at a concentration of 10 μM upon 8 h of treatment. Neither of the two HDACis affected mature cysts, but significant amoebicidal activities (36.4 and 33.9%) were observed against encysting Acanthamoeba following treatment with 5 and 10 μM HDACis for 24 h. Light microscopy and transmission electron microscopy results confirmed that the encystation of Acanthamoeba was inhibited by the two HDACis. In addition to this, low cytopathic effects on human corneal epithelial (HCE) cells were observed following treatment with MPK472 and KSK64 for 24 h. Our results indicate that the HDACis MPK472 and KSK64 could be used as new candidates for the development of an optimal therapeutic option for AK.


Sign in / Sign up

Export Citation Format

Share Document