Late Cretaceous stratigraphy, depositional environments, and macrovertebrate paleontology of the Kaiparowits Plateau, Grand Staircase–Escalante National Monument, Utah

Author(s):  
Alan L. Titus ◽  
John D. Powell ◽  
Eric M. Roberts ◽  
Scott D. Sampson ◽  
Stonnie L. Pollock ◽  
...  
2016 ◽  
Vol 3 ◽  
pp. 229-291 ◽  
Author(s):  
Alan L. Titus ◽  
Jeffrey G. Eaton ◽  
Joseph Sertich

The Late Cretaceous succession of southern Utah was deposited in an active foreland basin circa 100 to 70 million years ago. Thick siliciclastic units represent a variety of marine, coastal, and alluvial plain environments, but are dominantly terrestrial, and also highly fossiliferous. Conditions for vertebrate fossil preservation appear to have optimized in alluvial plain settings more distant from the coast, and so in general the locus of good preservation of diverse assemblages shifts eastward through the Late Cretaceous. The Middle and Late Campanian record of the Paunsaugunt and Kaiparowits Plateau regions is especially good, exhibiting common soft tissue preservation, and comparable with that of the contemporaneous Judith River and Belly River Groups to the north. Collectively the Cenomanian through Campanian strata of southern Utah hold one of the most complete single region terrestrial vertebrate fossil records in the world.


Author(s):  
Clara Guatame ◽  
Marco Rincón

AbstractThe Piedemonte Llanero Basin is located on the eastern side of the Eastern Cordillera of the Colombian Andes. It has been the subject of numerous geological studies carried out for the oil sector, mainly. This study presents the coal-petrographical features of 15 coal seams of four geological formations from Late Cretaceous to Middle Miocene (Chipaque formation, Palmichal group, Arcillas del Limbo formation, and San Fernando formation). Analysis of 33 samples indicates enrichment in vitrinite, while liptinite and inertinite concentrations vary according to the stratigraphic position. Reflectance indicates that the coal range gradually decreases from highly volatile bituminous C (Chipaque formation) to subbituminous C (San Fernando formation). The microlithotypes with the highest concentrations are clarite and vitrinertoliptite. Maceral composition and coal facies indicate changes in the depositional conditions of the sequence. The precursor peat from Late Cretaceous to Late Paleocene accumulated under limnic conditions followed by telmatic in Late Eocene–Early Miocene. The coal facies indices show wet conditions in forest swamps with variations in the flooding surface, influxes of brackish water and good tissue preservation. The tectonic conditions along the Piedemonte Llanero basin is evident, from post-rift to foreland basin, evidenced by oxic and anoxic periods reflected in the maceral composition and its morphology. The coal environment corresponds to an estuarine system started in the Chipaque formation evolving to the lacustrine conditions in the San Fernando formation.


2021 ◽  
Author(s):  
Jordan Walker ◽  
Sally Potter-McIntyre

<p>Mollies Nipple—a butte located in the Grand Staircase-Escalante National Monument (GSENM)—is of special interest because of the presence of unusual alunite and jarosite cements within the caprock. These minerals precipitate in hyperacidic environments (pH1-2) and are not stable over ~pH5; yet they are abundant on Mars where they are used to interpret depositional and diagenetic environments. The caprock at Mollies Nipple is historically interpreted as Navajo Sandstone via photogeologic mapping; however, it is ~200 m above the mapped upper extent of the Navajo Sandstone in this region. The units overlying the Navajo Sandstone have complex stratigraphic relations in this region and the caprock could be the Carmel or Temple Cap Formations, or the Page Sandstone. This study aims to characterize Mollies Nipple through measured sections, mineralogical analyses, palynomorph analysis, and radiometric age dates from ash lenses present in the caprock. The results will better define the stratigraphy of Mollies Nipple and determine the regional correlation of the caprock. Ultimately, this work will contribute to the understanding of how alunite and jarosite were precipitated at Mollies Nipple; why these minerals are still present at Mollies Nipple, and potentially revise the understanding of Martian depositional environments.</p>


2021 ◽  
Author(s):  
◽  
James McClintock

<p>The Glenburn Formation of the East Coast of New Zealand is a Late Cretaceous sedimentary formation consisting of alternating layers of sandstone, mudstone and conglomerate. The Glenburn Formation spans a depositional timeframe of over 10 Ma, is over 1000 m thick, is regionally extensive and is possibly present over large areas offshore. For these reasons, it is important to constrain the paleoenvironment of this unit.  Late Cretaceous paleogeographic reconstructions of the East Coast Basin are, however, hampered by a number of factors, including the pervasive Neogene to modern tectonic deformation of the region, the poorly understood nature of the plate tectonic regime during the Cretaceous, and a lack of detailed sedimentological studies of most of the region’s Cretaceous units. Through detailed mapping of the Glenburn Formation, this study aims to improve inferences of regional Cretaceous depositional environments and paleogeography.  Detailed facies based analysis was undertaken on several measured sections in eastern Wairarapa and southern Hawke’s Bay. Information such as bed thickness, grain size and sedimentary structures were recorded in order to identify distinct facies. Although outcrop is locally extensive, separate outcrop localities generally lie in different thrust blocks, which complicates comparisons of individual field areas and prevents construction of the large-scale, three-dimensional geometry of the Glenburn Formation.  Glenburn Formation consists of facies deposited by sediment gravity flows that were primarily turbidity currents and debris flows. Facies observed are consistent with deposition on a prograding submarine fan system. There is significant variation in facies both within and between sections. Several distinct submarine fan architectural components are recognised, such as fan fringes, fan lobes, submarine channels and overbank deposits. Provenance and paleocurrent indicators are consistent with deposition having occurred on several separate submarine fans, and an integrated regional paleogeographic reconstruction suggests that deposition most likely occurred in a fossil trench following the mid-Cretaceous cessation of subduction along the Pacific-facing margin of Gondwana.</p>


2021 ◽  
Author(s):  
Ekundayo Joseph Adepehin ◽  
Bamidele Samuel Oretade ◽  
Peter Sunday Ola

Abstract Presented in this study are the findings of a cross-examination of the subsurface stratigraphic successions (1500-4600 m) penetrated by the Gaibu-1 well, Bornu Basin, NE Nigeria to understand the palaeoenvironmental settings and the palaeoclimatic conditions of the sediments. Sedimentological/textural description, lithological identification and palynological analysis were carried out using standard laboratory procedures and wireline (gamma-ray and SP) logs. The sediments consist predominantly of sandstone, siltstone, sandy shale, and shale. The sandstones range from fine-coarse, angular to sub-rounded, moderate to poorly sorted, and are texturally immature. Five (5) stratigraphic sub-divisions; the Bima, the Yolde, the Gongila, the Fika (Upper, Middle and Lower members) and the Gombe formations were identified. The palynozonation enabled four distinctive zones: (i) A (1) Triorites africaensis Assemblage Zone, (ii) A (2) Cretacaeiporites scabratus / Odontochitina costata Assemblage Zone, (iii) A (3) Droseridites senonicus Assemblage Zone, A (4) Syncolporites/Milfordia spp. Assemblage Zone. These suggest the well penetrated Cenomanian – Maastrichtian (younger) successions, interpreted to have been deposited in a series of continental to marginal marine environments. The sediments are characterised by palynofloral assemblages that are indicative of a tropical to subtropical climate condition that is warm and humid, which correspond to the late Cretaceous Palmae Province of Africa – Southern America.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 993
Author(s):  
Li Zhang ◽  
Changmin Zhang ◽  
Luxing Dou

The limited knowledge of Late Cretaceous terrestrial environments and their response to tectonic events in mid-latitudes can be addressed through continental basin deposits such as paleosols. Paleosols have been discovered in the Late Cretaceous Yaojia Formation in the southern Songlaio Basin and are recognized by evidence of soil structures controlled by pedogenesis. Sedimentary facies research on red paleosols was conducted on the Late Cretaceous Yaojia Formation in the outcrop of the southern Songliao Basin to interpret the depositional environments and tectonic significance of red paleosols during the greenhouse period. Mudflat, lake margin, and shallow lake depositional environments in a semi-arid climate are interpreted from the outcrops based on sedimentary descriptions and interpretation as well as geochemical and micromorphological analyses of paleosols in outcrops. We reconstructed the paleoenvironmental and paleoclimatic conditions through the paleosols in the mudflats and lake margin. The red paleosols in the mudflats and lake margin deposits formed in a stable landscape influenced by the tectonic uplift of the Songliao Basin, which is considered as new important evidence for tectonic uplift influenced by the collision of the Okhotomorsk Block with East Asia. The tectonic uplift process in East Asia is identified from the evolution of the depositional environments and drainage conditions inferred from different types of paleosols. Thus, the paleosols-bearing red bed deposits in outcrops provide an important contribution of the Late Cretaceous terrestrial paleoclimate and the tectonic setting research.


Sign in / Sign up

Export Citation Format

Share Document