DEFORMATION AND MELT CRYSTALLIZATION IN LESSER HIMALAYAN SEQUENCE ROCKS AT 7 MA REVEALED BY U-TH/PB ZIRCON GEOCHRONOLOGY AND IN SITU MONAZITE PETROCHRONOLOGY

2017 ◽  
Author(s):  
Zoe Braden ◽  
◽  
Laurent Godin ◽  
John M. Cottle ◽  
Chris Yakymchuk ◽  
...  
Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 829
Author(s):  
Jingyao Xu ◽  
Joan Melgarejo ◽  
Qiuli Li ◽  
Lisard Abat ◽  
Montgarri Castillo-Oliver

We present the results of a detailed petrographic study of fresh coherent samples of the Menominee kimberlite sampled at site 73, located in Menominee County, MI, USA. Our objective is to account for its unusual and complex paragenetic sequence. Several generations of olivine, ilmenite, and spinel-group minerals are described. Early olivine and ilmenite are xenocrystic and were replaced or overgrown by primary minerals. Zoned microcrysts of olivine have a xenocrystic core mantled by a first rim in which rutile, geikielite, and spinel s.s. (spinel sensu stricto) cocrystallized. The in situ U–Pb dating of a microcryst of primary rutile yielded 168.9 ± 4.4 Ma, which was interpreted as the age of emplacement. The groundmass consists of olivine, spinel s.s., a magnesian ulvöspinel–ulvöspinel–magnetite (MUM) spinel, calcite, and dolomite. An extremely low activity of Si is suggested by the crystallization of spinel s.s. instead of phlogopite in the groundmass. The presence of djerfisherite microcrysts indicates high activities of Cl and S during the late stages of melt crystallization. The occurrence of two distinct spinel-group minerals (spinel s.s. and qandilite-rich MUM) in the groundmass is interpreted as clear evidence of the mingling of a magnesiocarbonatitic melt with a dominant kimberlitic melt.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Valentina Sabatini ◽  
Hermes Farina ◽  
Luca Basilissi ◽  
Giuseppe Di Silvestro ◽  
Marco A. Ortenzi

Polylactic acid (PLA) nanocomposites were prepared via “in situ” ring opening polymerization (ROP) of lactide using a montmorillonite, Cloisite 15A, employed after surface treatment with 3-Glycidoxypropyltrimethoxysilane. The dispersion of the nanoparticles was checked using Wide Angle X-Ray Scattering (WAXS) and Transmission Electron Microscopy (TEM); both the effects of different amounts of montmorillonite and silane were measured on molecular weights and on thermal and rheological properties, using Size Exclusion Chromatography (SEC), Differential Scanning Calorimetry (DSC), thermogravimetric analyses (TGA), and rheological analyses. It was found that even very low amounts (0.1% w/w) of nanoparticles greatly affect nanocomposites properties. Unmodified montmorillonite tends to decrease molecular weights, deactivating the catalytic system used for ROP of lactide, but when epoxy silane is present molecular weights increase. Melt crystallization temperatures increase with modified nanoparticles, which enhance crystallization process. TGA analyses show that when pure montmorillonite is present, nanocomposites have lower thermal stability with respect to standard PLA; when silane is used thermal stability can get much higher than standard PLA as silane content increases. The rheological behaviour of nanocomposites shows that melt viscosity is far higher than that of standard PLA at low shear rates and also a marked shear thinning behaviour can be achieved.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 566 ◽  
Author(s):  
Carlin Lentz ◽  
Kathleen Thorne ◽  
Christopher R. M. McFarlane ◽  
Douglas A. Archibald

The Lake George antimony mine was at one time North America’s largest producer of antimony. Despite being widely known for the antimony mineralization, the deposit also hosts a range of styles of mineralization such as multiple generations of W-Mo bearing quartz veins as well as a system of As-Au bearing quartz–carbonate veins. In situ U-Pb zircon geochronology, using LA ICP-MS, of the Lake George granodiorite yielded a weighted mean 206Pb/238U age of 419.6 ± 3.0 Ma. Step heating of phlogopite separated from the lamprophyre dykes produced a 40Ar/39Ar plateau segment date of 419.4 ± 1.4 Ma. Single molybdenite crystal analysis for Re-Os geochronology was conducted on two W-Mo-bearing quartz veins, which cross-cut altered granodiorite and altered metasedimentary rocks and yielded two dates of 415.7 ± 1.7 Ma and 416.1 ± 1.7 Ma respectively. 40Ar/39Ar geochronology of muscovite from alteration associated with Au-bearing quartz–carbonate veins yielded one representative plateau segment date of 414.1 ± 1.3 Ma. The dates produced in this study revealed that the different magmatic–hydrothermal events at the Lake George mine occurred over approximately a 10-million-year period at the end of the Silurian and the start of the Devonian following the termination of the Acadian orogeny.


2021 ◽  
pp. 000370282110102
Author(s):  
Huiqiang Lu ◽  
Harumi Sato ◽  
Sergei G Kazarian

Inter- and intramolecular interactions in multicomponent polymer systems influence their physical and chemical properties significantly and thus have implications on their synthesis and processing. In the present study, chemical images were obtained by plotting the peak position of a spectral band from the datasets generated by in-situ ATR-FTIR spectroscopic imaging. This approach was successfully used to visualize changes in intra- and intermolecular interactions in Poly(3-hydroxybutyrate)/Poly(L-lactic acid) (PHB/PLLA) blends during the isothermal melt crystallization. The peak position of ν (C=O) band, which reflects the nature of the intermolecular interaction, shows that the intermolecular interactions between PHB and PLLA in the miscible state (1733 cm-1) changes to the inter- and intramolecular interaction (CH3∙∙∙O=C, 1720 cm-1) within PHB crystal during the isothermal melt crystallization. Compared with spectroscopic images obtained by plotting the distribution of absorbance of spectral bands, which reveals the spatial distribution of blend components, the approach of plotting the peak position of a spectral band reflects the spatial distribution of different intra- and intermolecular interactions. With the process of isothermal melt-crystallization, the disappearance of the intermolecular interaction between PHB and PLLA and the appearance of the inter- and intramolecular interactions within the PHB crystal were both visualized through the images based on the observation of the band position. This work shows the potential of using in-situ ATR-FTIR spectroscopic imaging to visualize different types of inter- or intramolecular interactions between polymer molecules or between polymer and other additives in various types of multicomponent polymer systems.  


Sign in / Sign up

Export Citation Format

Share Document