scholarly journals Stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone

Author(s):  
Matthias Sprenger ◽  
Doerthe Tetzlaff ◽  
Chris Soulsby

Abstract. Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris) and heather (Calluna sp. and Erica Sp)) and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands; a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analysed for their isotopic composition (δ2H and δ18H) with the direct equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15–20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly) and depth (5 cm intervals) revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical, when using stable isotopes as tracers to assess plant water uptake patterns within the critical zone or applying them to calibrate tracer-aided hydrological models either at the plot to the catchment scale.

2017 ◽  
Vol 21 (7) ◽  
pp. 3839-3858 ◽  
Author(s):  
Matthias Sprenger ◽  
Doerthe Tetzlaff ◽  
Chris Soulsby

Abstract. Understanding the influence of vegetation on water storage and flux in the upper soil is crucial in assessing the consequences of climate and land use change. We sampled the upper 20 cm of podzolic soils at 5 cm intervals in four sites differing in their vegetation (Scots Pine (Pinus sylvestris) and heather (Calluna sp. and Erica Sp)) and aspect. The sites were located within the Bruntland Burn long-term experimental catchment in the Scottish Highlands, a low energy, wet environment. Sampling took place on 11 occasions between September 2015 and September 2016 to capture seasonal variability in isotope dynamics. The pore waters of soil samples were analyzed for their isotopic composition (δ2H and δ18O) with the direct-equilibration method. Our results show that the soil waters in the top soil are, despite the low potential evaporation rates in such northern latitudes, kinetically fractionated compared to the precipitation input throughout the year. This fractionation signal decreases within the upper 15 cm resulting in the top 5 cm being isotopically differentiated to the soil at 15–20 cm soil depth. There are significant differences in the fractionation signal between soils beneath heather and soils beneath Scots pine, with the latter being more pronounced. But again, this difference diminishes within the upper 15 cm of soil. The enrichment in heavy isotopes in the topsoil follows a seasonal hysteresis pattern, indicating a lag time between the fractionation signal in the soil and the increase/decrease of soil evaporation in spring/autumn. Based on the kinetic enrichment of the soil water isotopes, we estimated the soil evaporation losses to be about 5 and 10 % of the infiltrating water for soils beneath heather and Scots pine, respectively. The high sampling frequency in time (monthly) and depth (5 cm intervals) revealed high temporal and spatial variability of the isotopic composition of soil waters, which can be critical, when using stable isotopes as tracers to assess plant water uptake patterns within the critical zone or applying them to calibrate tracer-aided hydrological models either at the plot to the catchment scale.


2003 ◽  
Vol 19 (2) ◽  
pp. 209-214 ◽  
Author(s):  
Jean-François Mauffrey ◽  
François Catzeflis

Stable isotopes are commonly used in ecological studies to infer food resources (Ambrose & DeNiro 1986, Bocherens et al. 1990,1991,1994;Yoshinaga et al. 1991) since isotopic composition is conserved during the feeding process. Moreover,for herbivorous (sensu lato) species, it is often possible to identify the main resource because different photosynthetic pathways generate different values of carbon isotope ratios (Park & Epstein 1961, Sternberg et al. 1984). This allows the characterization of broad biota such as savannas or forest and discrimination of grazers from sympatric folivorous species (DeNiro & Epstein 1978).


2021 ◽  
Author(s):  
Pilar Llorens ◽  
Sebastián González ◽  
Jérôme Latron ◽  
Cesc Múrria ◽  
Núria Bonada ◽  
...  

<p>Temporary rivers, characterized by shifts between flowing water, disconnected pools and dry periods, represent over 50% of the world’s river network and future climatic projections suggest their increase. These rivers are understudied, especially when only disconnected pools remain, because gauging stations or hydrological models do not inform of what happens after the cessation of flow. In addition, most of biological indicators for water quality are designed for flowing waters and their adequacy for temporary rivers is uncertain.</p><p>The development of biological metrics adequate for the assessment of disconnected pools is difficult, because the high species replacement during and following flow cessation. For this reason, one hydrological variable of paramount importance for the assessment of ecological quality of disconected pools is the time since disconnection from the river flow.</p><p>The objective of our work is to present a methodology to estimate the time since disconnection of pools from the river flow. This methodology, following the Gonfiantini (1986) model, is based on the sampling of water stable isotopes in disconnected pools. For pools disconnected from the groundwater, knowing the isotopic modification of the water in time due to evaporation, allows to estimate the relative volume of water evaporated since the pool has been disconnected. However, this approach gets complicated when pools have relevant rainfall inputs or exchanges with groundwater.</p><p>Within the Vallcebre research area (42º12’N and 1º49’E), two artificial pools, one covered with a transparent lid to prevent the input of rainfall and another uncovered, were installed to validate this methodology in controlled conditions. From July to November 2020, water volume of these pools were weekly measured and sampled for isotopic analysis. In parallel, meteorological variables were monitored and rainfall was also sampled for water stable isotopes.</p><p>To develop and validate an operational methodology for estimating the time since disconnection, we first calculated the relative amount of evaporated water based on the variations of isotopic composition of the covered pool samples, and estimated the time since disconnection (for a given natural pool) using the potential evaporation calculated from the meteorological data. For the uncovered pool, the information of amount and isotopic composition of rainfall was added in a mass balance model. Additionally, the same estimations were calculated with standard information (i.e. the meteorological data obtained from the National Meteorological Service and precipitation isotopes data from the Global Network of Isotopes in Precipitation (GNIP) of the International Atomic Energy Agency). Finally, measured volumes changes in pools, were used to assess the limitations of the operational methodology and the sensitivity of the results to meteorological conditions.</p><p>Our approach suggests that changes in isotopic composition can be a reliable method to estimate time since disconnection of pools in temporary rivers to better assess their ecological quality.</p>


Sign in / Sign up

Export Citation Format

Share Document