A NOVEL APPROACH TO STUDY THE IMPACT OF HUMAN INTERVENTION STRUCTURES ON THE SPATIO-TEMPORAL VARIATION OF SEDIMENT GRAIN SIZE IN THE EASTERN HIMALAYAN RIVER TISTA

2019 ◽  
Author(s):  
Kausik Ghosh ◽  
◽  
Tapan Chakraborty
2021 ◽  
Author(s):  
Yu Wang ◽  
Bao-long Li ◽  
Juan-juan Liu ◽  
Qi Feng ◽  
Wei Liu ◽  
...  

Abstract Spatial variations in grain-size parameters can reflect river sediment transport patterns and depositional dynamics. Therefore, 22 surficial sediment samples taken from the Heihe River and its cascade reservoirs were analyzed to better understand the impact of cascade reservoir construction on sediment transport patterns in inland rivers in China. The results showed that the longitudinal distribution of sediment grain size in the Heihe River was significantly affected by the influence of the cascade reservoirs. The grain size of the reservoir sediments within the cascade reservoir system was much lower than that of sediments in the natural river section, and the sediments in the natural river were well sorted, exhibiting leptokurtosis and positive or very positive skew. The lower reaches of the dammed river experienced strong erosion, and the grains of the bed sediments were coarse and poorly sorted; the grain-size distributions were more positively skewed and exhibited leptokurtosis. The backwater zone of the reservoir was influenced by both backwater and released water, and the sediment grain size was between the grain size of the natural river and that of the lower reaches of the dam; these sediments were moderately well sorted and had a positively skewed, leptokurtic grain-size distribution. Sedimentary environmental analysis revealed that the characteristics of the sediment grain size in an upstream tributary of the Heihe River were more influenced by source material than by hydrodynamic conditions, while the grain-size characteristics of the mainstream sediments were controlled mainly by hydrodynamic conditions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Malin Olofsson ◽  
James G. Hagan ◽  
Bengt Karlson ◽  
Lars Gamfeldt

Abstract Aquatic phytoplankton experience large fluctuations in environmental conditions during seasonal succession and across salinity gradients, but the impact of this variation on their diversity is poorly understood. We examined spatio-temporal variation in nano- and microphytoplankton (> 2 µm) community structure using almost two decades of light-microscope based monitoring data. The dataset encompasses 19 stations that span a salinity gradient from 2.8 to 35 along the Swedish coastline. Spatially, both regional and local phytoplankton diversity increased with broad-scale salinity variation. Diatoms dominated at high salinity and the proportion of cyanobacteria increased with decreasing salinity. Temporally, cell abundance peaked in winter-spring at high salinity but in summer at low salinity. This was likely due to large filamentous cyanobacteria blooms that occur in summer in low salinity areas, but which are absent in higher salinities. In contrast, phytoplankton local diversity peaked in spring at low salinity but in fall and winter at high salinity. Whilst differences in seasonal variation in cell abundance were reasonably well-explained by variation in salinity and nutrient availability, variation in local-scale phytoplankton diversity was poorly predicted by environmental variables. Overall, we provide insights into the causes of spatio-temporal variation in coastal phytoplankton community structure while also identifying knowledge gaps.


2021 ◽  
Vol 873 (1) ◽  
pp. 012010
Author(s):  
Muhammad Bani Al-Rasyid ◽  
Mira Nailufar Rusman ◽  
Daniel Hamonangan ◽  
Pepen Supendi ◽  
Kartika Hajar Kirana

Abstract Banda arc is a complex tectonic structure manifests by high seismicity due to the collision of a continent and an intra-oceanic island arc. Using the relocated earthquakes data from ISC-EHB and BMKG catalogues from the time period of 1960 to 2018, we have conducted a spatial and temporal variation of b-value using the Guttenberg-Richter formula in the area. Our results show that the spatial distribution of low b-values located in the south of Ambon Island and southeast of Buru Island. On the other hand, the temporal variation of b-value shows a decrease in the northern part of the Banda sea probably high potential to produce large earthquakes in the future. Therefore, further mitigation is needed to minimize the impact of earthquakes in the area.


2020 ◽  
Author(s):  
Shuaib Rasheed ◽  
Simon C. Warder ◽  
Yves Plancherel ◽  
Matthew D. Piggott

Abstract. Changes to coastlines and bathymetry alter tidal dynamics and associated sediment transport process, impacting upon a number of threats facing coastal regions, including flood risk and erosion. Especially vulnerable are coral atolls such as those that make up the Maldives archipelago which has undergone significant land reclamation in recent years and decades, and is also particularly exposed to sea level rise. Here we develop a tidal model of Male' Atoll, Maldives, and use it to assess potential changes to sediment grain size distributions under sea level rise and coastline alteration scenarios. The results indicate that the impact of coastline modification over the last two decades at the island scale is not limited to the immediate vicinity of the modified island, but can also significantly impact the sediment grain size distribution across the wider atoll basin. Additionally, the degree of change in sediment distribution which can be associated with sea level rise that is projected to occur over relatively long time periods is predicted to occur over far shorter time periods with coastline changes, highlighting the need to better understand, predict and mitigate the impact of land reclamation and other coastal modifications before conducting such activities.


Ocean Science ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 319-334
Author(s):  
Shuaib Rasheed ◽  
Simon C. Warder ◽  
Yves Plancherel ◽  
Matthew D. Piggott

Abstract. Changes to coastlines and bathymetry alter tidal dynamics and associated sediment transport processes, impacting upon a number of threats facing coastal regions, including flood risk and erosion. Especially vulnerable are coral atolls such as those that make up the Maldives archipelago, which has undergone significant land reclamation in recent years and decades and is also particularly exposed to sea level rise. Here we develop a tidal model of Malé Atoll, Maldives, the first atoll-scale and multi-atoll-scale high-resolution numerical model of the atolls of the Maldives and use it to assess potential changes to sediment grain size distributions in the deeper atoll basin, under sea level rise and coastline alteration scenarios. The results indicate that the impact of coastline modification over the last two decades at the island scale is not limited to the immediate vicinity of the modified island but can also significantly impact the sediment grain size distribution across the wider atoll basin. Additionally, the degree of change in sediment distribution which can be associated with sea level rise that is projected to occur over relatively long time periods is predicted to occur over far shorter time periods with coastline changes, highlighting the need to better understand, predict and mitigate the impact of land reclamation and other coastal modifications before conducting such activities.


Oecologia ◽  
2018 ◽  
Vol 188 (4) ◽  
pp. 1037-1047 ◽  
Author(s):  
Marcin Brzeziński ◽  
Piotr Chibowski ◽  
Joanna Gornia ◽  
Grzegorz Górecki ◽  
Andrzej Zalewski

2019 ◽  
Vol 8 (2S11) ◽  
pp. 3011-3015

The impact of coastal sediment transport in the nearshore region is significant and the need for improved sediment quantification techniques appears to be universally accepted. The coastal sediment transport models presently in use were derived empirically from very sparse measurements of waves and currents and from laboratory experiments. The shoreline of Kadalur fishing villages near Kalpakkam has been experiencing erosion due to occurrence of cyclones every monsoon. Palar River with its confluence in the Bay of Bengal at the northern tip of the Kadalur villages has its mouth closed due to negligible river flow. The purpose of this study is to assess sediment dynamics in the Kalpakkam coast using two independent approaches; namely Sediment Trend Analysis (STA) and two dimensional numerical modelling. The latter can track the movement of individual particles. Numerical modelling approach is based on Delft3D model which allows the coupling of flow and wave modules. STA and numerical modelling results can provide sediment transport direction. The combination of both approaches provides a means of verification of sedimentation processes. The basic assumption in STA is that sediment transport can be responsible for the differences in sediment grain size distributions. For Grain Size Trend Analysis, grab samples were collected throughout the nearshore area. Grain Size Trend Analysis was then carried out and subsequent results were plotted to obtain the sediment transport pattern for the region. The results obtained are compared with the numerical model results and also used for validation of sediment transport evaluated using the numerical model.


2020 ◽  
Author(s):  
Onn Crouvi ◽  
Ran Shemesh ◽  
Oded Katz ◽  
Amit Mushkin ◽  
Navot Morag ◽  
...  

<p>Beach morphodynamics are largely controlled by the interaction of wave climate with beach sediments. Local changes in sediment grain size, shape or density can lead to distinct morphological changes of beach systems subjected to similar energetic inputs. Whereas the spatial variation of grain size along beach profiles has been well studied, the temporal variation in beach grain size has received less attention. Moreover, the fate of cliff-eroded sediments along sandy coasts, with limited tidal effect, was rarely studied as most studies focused on shingle beaches (rocky/pebble rich) especially in coastal environments where tide plays an important role.</p><p>Here we use grain size data to explore the temporal dynamics of beach sediments in cliff-dominated beaches along Israel’s Mediterranean coast and their relationship to cliff erosion as well as sand abrasion/attrition. Our approach is based on repetitive seasonal-scale sampling of surficial sediments along cross shore transects over 3 years. We found that most samples exhibit unimodal particle size distribution (PSD), with a mode either at the fine sand fraction (180-220 µm) composed of quartz, or at the coarse sand to very coarse sand fraction (900-1,200 µm), composed of eolianite rock chips. The coarse fraction dominants the PSD mostly during winter times, whereas at summer times it is usually absent. In addition, this coarse fraction decreases with time that passed since waves reached the cliff base during sea storms. Our results suggest that: 1) The addition of the coarse fraction during winter is related to high-energy wave storms that mobilize and transport cliff-derived materials (taluses) along the beach, and 2) The disappearance of the coarse fraction towards summer is related to sand abrasion by wave and/or by wind action, i.e. breakage of the ~1 mm eolianite rock chips into ~200 µm quartz grains. Our findings emphasize the importance of cliff erosion and sand abrasion in controlling the temporal variation in PSD along cliff-dominated beaches.</p>


Author(s):  
Yu Wang ◽  
Bao-long Li ◽  
Juan-juan Liu ◽  
Qi Feng ◽  
Wei Liu ◽  
...  

AbstractSpatial variations in grain size parameters can reflect river sediment transport patterns and depositional dynamics. Therefore, 22 surficial sediment samples taken from the Heihe River and its cascade reservoirs were analyzed to better understand the impact of cascade reservoir construction on sediment transport patterns in inland rivers in China. The results showed that the longitudinal distribution of sediment grain size in the Heihe River was significantly affected by the influence of the cascade reservoirs. The retention rate in the cascade reservoir of the Heihe River reached 79% (193.53 Mt/year), which caused most of the fine sand to accumulate in the reservoir, and the sediment fining degree reached approximately 50%. However, the water discharged from the dam caused serious erosion of the riverbed and coarsening of the sediment, and the coarsening degree was approximately 500%. The backwater zone of the reservoir was influenced by both backwater and released water, and the coarsening degree of sediment was approximately 101%. Sedimentary environmental analysis revealed that the characteristics of the sediment grain size in an upstream tributary of the Heihe River were more influenced by source material than by hydrodynamic conditions, while the grain size characteristics of the mainstream sediments were controlled mainly by hydrodynamic conditions. The characteristics of sediment transport in different reaches of the Heihe River were studied, and the results may provide references for the operation of cascade reservoirs and the sediment control of reservoirs.


Sign in / Sign up

Export Citation Format

Share Document