scholarly journals Hydrothermal formation of iron-oxyhydroxide chimney mounds in a shallow semi-enclosed bay at Satsuma Iwo-Jima Island, Kagoshima, Japan

2021 ◽  
Vol 133 (9-10) ◽  
pp. 1890-1908
Author(s):  
Shoichi Kiyokawa ◽  
Takashi Kuratomi ◽  
Tatsuhiko Hoshino ◽  
Shusaku Goto ◽  
Minoru Ikehara

Abstract Hydrothermal iron-oxyhydroxide chimney mounds (iron mounds) have been discovered in a fishing port in Nagahama Bay, located on the southwest coast of Satsuma Iwo-Jima Island, south of Kyushu Island, Japan. In the fishing port, uncovered ∼1.0-m-high iron mounds in shallow waters formed under relatively calm conditions. Typically, the fishing port has orange-colored turbid waters that mix with outer ocean waters during high tide. Colloidal iron-oxyhydroxides form due to the oxidation of ferrous iron in hydrothermal waters (pH = 5.5; temperature = 55 °C) as they mix with seawater. The mounds are made of two types of material: hard, dark brown–orange, high-density material; and soft, brownish orange–yellow, low-density material. Computed tomography scans of the harder iron mound material revealed a cabbage-like structure consisting of micropipe structures with diameters of 2–5 mm. These micropipes have relatively hard walls made of iron oxyhydroxides (FeOH) and are identified as discharge pipes. Nucleic acid staining genetic sequencing and scanning electron microscope observations suggest that the mounds formed mainly from bacterial stalks with high concentrations of FeOH colloidal matter. In the harder parts of the mounds, these “fat stalks,” which contain oxyhydroxide colloidal aggregates, are entwined and concentrated. The softer material contains twisted stalk-like structures, which are coated with FeOH colloidal particles. Deoxyribonucleic acid (DNA) examination of the iron mounds revealed the presence of iron-oxidizing bacteria, especially at the mound surface. We estimate that the iron mounds accumulated at a rate of ∼1700 tons/1000 m2/yr. This is an order of magnitude higher than the rate of FeOH sedimentation via chemical precipitation of FeOH colloids within the fishing port. This suggests that biogenic activity, resulting in the production of entwined FeOH stalks, leads to the rapid accumulation of FeOH beds and that biogenic activity within the water mass rich in FeOH colloids is an efficient means of generating thick iron-rich sedimentary sequences. As such, we propose that some ancient iron formations may have also formed through the biogenic production of FeOH stalks rather than solely through chemical sedimentation in a water mass rich in FeOH colloids. It appears that these rapidly forming biogenic FeOH iron mounds, distributed over a wide area of ocean floor, are also relatively protected from erosion and diagenetic alteration (reduction). Previous studies have reported that ancient iron formations were commonly deposited in deeper environments via direct iron oxidation from the water column in a ferruginous ocean. However, there are several hydrothermal vent inflows preserved with FeOH that would have formed appropriate redox boundary conditions in an otherwise anoxic ocean. Under these conditions, iron mound mat-type sedimentary deposits might have formed and been well preserved and affected by early diagenesis where higher heat flow occurred in the Archean ocean. The FeOH mounds in Nagahama Bay provide an example of the iron formation sedimentary environment and important information for estimating the past depositional state of iron formations.

Geosciences ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 480 ◽  
Author(s):  
Jeremiah Shuster ◽  
Maria Rea ◽  
Barbara Etschmann ◽  
Joël Brugger ◽  
Frank Reith

Terraced iron formations (TIFs) are laminated structures that cover square meter-size areas on the surface of weathered bench faces and tailings piles at the Mount Morgan mine, which is a non-operational open pit mine located in Queensland, Australia. Sampled TIFs were analyzed using molecular and microanalytical techniques to assess the bacterial communities that likely contributed to the development of these structures. The bacterial community from the TIFs was more diverse compared to the tailings on which the TIFs had formed. The detection of both chemolithotrophic iron-oxidizing bacteria, i.e., Acidithiobacillus ferrooxidans and Mariprofundus ferrooxydans, and iron-reducing bacteria, i.e., Acidobacterium capsulatum, suggests that iron oxidation/reduction are continuous processes occurring within the TIFs. Acidophilic, iron-oxidizing bacteria were enriched from the TIFs. High-resolution electron microscopy was used to characterize iron biomineralization, i.e., the association of cells with iron oxyhydroxide mineral precipitates, which served as an analog for identifying the structural microfossils of individual cells as well as biofilms within iron oxyhydroxide laminations—i.e., alternating layers containing schwertmannite (Fe16O16(OH)12(SO4)2) and goethite (FeO(OH)). Kinetic modeling estimated that it would take between 0.25–2.28 years to form approximately one gram of schwertmannite as a lamination over a one-m2 surface, thereby contributing to TIF development. This length of time could correspond with seasonable rainfall or greater than average annual rainfall. In either case, the presence of water is critical for sustaining microbial activity, and subsequently iron oxyhydroxide mineral precipitation. The TIFs from the Mount Morgan mine also contain laminations of gypsum (CaSO·2H2O) alternating with iron oxyhydroxide laminations. These gypsum laminations likely represented drier periods of the year, in which millimeter-size gypsum crystals presumably precipitated as water gradually evaporated. Interestingly, gypsum acted as a substrate for the attachment of cells and the growth of biofilms that eventually became mineralized within schwertmannite and goethite. The dissolution and reprecipitation of gypsum suggest that microenvironments with circumneutral pH conditions could exist within TIFs, thereby supporting iron oxidation under circumneutral pH conditions. In conclusion, this study highlights the relationship between microbes for the development of TIFs and also provides interpretations of biogeochemical processes contributing to the preservation of bacterial cells and entire biofilms under acidic conditions.


1985 ◽  
Vol 42 (2) ◽  
pp. 332-341 ◽  
Author(s):  
Patrick Quellet ◽  
Julian J. Dodson

The vertical and horizontal distribution of anadromous rainbow smelt (Osmerus mordax) larvae from hatching in their natal river to their occupation of nursery areas in the middle estuary of the St. Lawrence River was documented to describe the mechanism responsible for the retention of smelt larvae in this area. Peaks of larval abundance observed downstream of the spawning grounds indicate a 24-h periodicity in hatching and the introduction of larvae into the riverine circulation. No retention of larvae was observed between the spawning ground and the downstream portion of the natal river. Our evidence indicates daytime accumulation of larvae at the mouth of the natal river, possibly resulting from the negative phototaxis exhibited by small smelt larvae. Patches of smelt larvae were incorporated into the St. Lawrence estuarine water mass once every 24 h at night following high tide. The subsequent downstream transport of larvae in the St. Lawrence estuary appears slower than the advection of the water mass due to the tendency of larvae to remain deeper in the water column during ebb tides and to concentrate near the surface during flood tides. Smelt larvae are transported from the south shore to the partially mixed northern portion of the middle estuary which represents the principal zone of larval smelt accumulation. We propose that the vertical displacements exhibited by smelt larvae in combination with the two-layer circulation system of the northern middle estuary results in the retention of smelt larvae in this region.


2021 ◽  
Author(s):  
Kaarel Mänd ◽  
Leslie J. Robbins ◽  
Noah J. Planavsky ◽  
Andrey Bekker ◽  
Kurt O. Konhauser

Ancient iron formations - iron and silica-rich chemical sedimentary rocks that formed throughout the Precambrian eons - provide a significant part of the evidence for the modern scientific understanding of palaeoenvironmental conditions in Archaean (4.0–2.5 billion years ago) and Proterozoic (2.5–0.539 billion years ago) times. Despite controversies regarding their formation mechanisms, iron formations are a testament to the influence of the Precambrian biosphere on early ocean chemistry. As many iron formations are pure chemical sediments that reflect the composition of the waters from which they precipitated, they can also serve as nuanced geochemical archives for the study of ancient marine temperatures, redox states, and elemental cycling, if proper care is taken to understand their sedimentological context.


2021 ◽  
Vol 925 (1) ◽  
pp. 012013
Author(s):  
I P Anwar ◽  
M R Putri ◽  
A Tarya ◽  
I Mandang

Abstract Balikpapan Bay is enclosed water influenced by freshwater from river runoff and saline water from Makassar Strait. The exchange of water mass was examined by 3D numerical model simulation-Hamburg Shelf Ocean Model (HAMSOM) with horizontal resolutions approx. 150 m and 10 vertical layers applied in Balikpapan Bay. The thirteen tidal components, daily river runoff, atmospheric forcing, subsurface temperature, and Salinity in 3D used for model input. The tidal elevation from Geospatial Information Agency (BIG) model fits with this result from 01/03/2020 to 31/03/2020. It has coefficient correlation 0,99 with a significant level of 95% and Root Mean Square Error (RMSE) is 0,1 m. The volume and salt transport in the mouth (Line-A) and middle (Line-B) of bay was examined. The maximum transport in Line-A during spring (neap) high to low tide and low to high tide is −18364.72 m3/s (−1717.57 m3/s) and −17532.27 m3/s (4258.86 m3/s) for volume. Then, 531,947,898.90 kg.psu./s (−45,127,135.38 kg.psu./s) and −536,410,944.50 kg.psu./s (140,700,437.97 kg.psu./s) for salinity. Positive (negative) of water transport is inflow (outflow) to Balikpapan Bay. The net transport in a day during the spring (neap) is −832.45 m3/s (5976.43 m3/s) for volume and −4,463,045.58 kg.psu./s (185,827,573.35 kg.pau./s) for salt. The vertical structure of net volume and salt transport bot in Line-A and Line-B shows the water goes to outer bay in surface and inner bay in subsurface. While in the spring tide the surface deeper than neap tide. It indicated that water mass exchange dominantly influenced by river in surface and tidal in subsurface. It also shows that water mass from inner bay more easy flushing during spring tide than neap tide and vice versa


2015 ◽  
Vol 3 (33) ◽  
pp. 17080-17090 ◽  
Author(s):  
Javier A. Arcibar-Orozco ◽  
Silvio Panettieri ◽  
Teresa J. Bandosz

The addition of graphite oxide and/or aminated graphite oxide increases the oxidative potential of iron oxyhydroxides leading to the efficient adsorption, oxidation, and elimination of chloroethyl ethyl sulfide.


2014 ◽  
Vol 10 (4) ◽  
pp. 3223-3253
Author(s):  
M. J. Herrero ◽  
J. I. Escavy ◽  
B. C. Schreiber

Abstract. Evaporites are commonly used as indicators of different paleoclimates and sedimentary environments, as well as being geological resources of great economic interest. Ordinarily the presence of evaporites is related to warm and arid environmental conditions, but there are evaporitic minerals, like mirabilite, that form by cooling and a concentration mechanism based on cooling and/or freezing. The diagenetic transformation of mirabilite into thenardite in the upper part of the lower Miocene unit of the Tajo basin (Spain) resulted in the largest reserves of this important industrial mineral in Europe. This unit was formed in a time period (~ 18.4 Ma) that, in other basins of the Iberian Peninsula, is characterized by the existence of particular mammal assemblages appropriate to a relatively cool and arid climate. Determining the origin of the thenardite deposits as related to the diagenetic alteration of a pre-existing mirabilite permits the establishment and characterization of the sedimentary environment where it was formed and also suggests use as a possible analogue with comparable deposits from extreme conditions such as Antarctica or Mars.


2002 ◽  
Vol 66 (6) ◽  
pp. 915-927 ◽  
Author(s):  
M. Stalder ◽  
A. Rozendaal

Abstract Granular aggregates of fine-grained graftonite (Fe,Mn,Ca)3(PO4)2 and intergrown wolfeite (Fe,Mn)2(PO4)(OH) occur in amphibolite-facies metamorphosed iron formations associated with the Gamsberg Zn-Pb deposit, South Africa. To date, these minerals were believed to have limited parageneses, being essentially restricted to granitic pegmatites and iron meteorites. This paper is the first report of the occurrence of graftonite and wolfeite in a regionally metamorphosed, iron formation-hosted setting. The aggregates are found together with Mn- and Pb-rich apatite and calcian pyromorphite in a pristine unit of almost pure chemical precipitates, the origin of which is intimately linked to the base-metal mineralizing process. Evidence from Gamsberg supports previous studies conducted on pegmatite-hosted graftonites that a simple host rock mineralogy and geochemical prerequisites, such as high activities of Fe, Mn, Ca and a deficiency in F, exert a dominant control on the stabilization of these minerals. However, in a marine sedimentary environment, significant concentrations of phosphorus have to be precipitated to prevent stabilization of all the phosphorus as fluorapatite. The paucity of graftonite in such settings suggests that the combination of these requirements is only rarely achieved.


RSC Advances ◽  
2018 ◽  
Vol 8 (69) ◽  
pp. 39545-39560 ◽  
Author(s):  
Linlin Hao ◽  
Mengzhu Liu ◽  
Nannan Wang ◽  
Guiju Li

The recent developments on iron-based adsorbents such as iron oxyhydroxides nanoparticles, zero-valent iron, bimetallic oxides, and iron oxyhydroxide-doped composite materials are fully discussed in this review.


2015 ◽  
Vol 11 (1) ◽  
pp. 1-13 ◽  
Author(s):  
M. J. Herrero ◽  
J. I. Escavy ◽  
B. C. Schreiber

Abstract. Salt deposits are commonly used as indicators of different paleoclimates and sedimentary environments, as well as being geological resources of great economic interest. Ordinarily, the presence of salt deposits is related to warm and arid environmental conditions, but there are salts, like mirabilite, that form by cooling and a concentration mechanism based on cooling and/or freezing. The diagenetic transformation of mirabilite into thenardite in the upper part of the lower Miocene unit of the Tajo basin (Spain) resulted in the largest reserves of this important industrial mineral in Europe. This unit was formed in a time period (~18.4 Ma) that, in other basins of the Iberian Peninsula, is characterized by the existence of particular mammal assemblages appropriate to a relatively cool and arid climate. Determining the origin of the thenardite deposits as related to the diagenetic alteration of a pre-existing mirabilite permits the establishment and characterization of the sedimentary environment where it was formed and also suggests use as a possible analog with comparable deposits from extreme conditions such as Antarctica or Mars.


Clay Minerals ◽  
1984 ◽  
Vol 19 (1) ◽  
pp. 85-91 ◽  
Author(s):  
T. Ericsson ◽  
J. Linares ◽  
E. Lotse

When describing clay minerals of natural origin one often has to take into account the possibility that they contain other phases, e.g. iron oxides and hydroxides which may form a ‘coating’ on the clay mineral itself or occur as physically inseparable ultra-fine particles. These iron oxyhydroxides are sometimes difficult to detect by XRD as a consequence of their very small ‘domain volumes’ (Kodama et al., 1977). The iron oxyhydroxides are normally removed chemically prior to detailed characterization of the clay mineral. Removal of iron oxyhydroxide coatings facilitates dispersion and subsequent particle-size fractionation of minerals and soils and also enhances the parallel orientation, and therefore the intensity, of basal X-ray reflections of layer-silicates.


Sign in / Sign up

Export Citation Format

Share Document