scholarly journals Deep-basin evidence resolves a 50-year-old debate and demonstrates synchronous onset of Messinian evaporite deposition in a non-desiccated Mediterranean

Geology ◽  
2018 ◽  
Vol 46 (3) ◽  
pp. 243-246 ◽  
Author(s):  
Aaron Meilijson ◽  
Josh Steinberg ◽  
Frits Hilgen ◽  
Or M. Bialik ◽  
Nicolas D. Waldmann ◽  
...  
2019 ◽  
Vol 56 (4) ◽  
pp. 365-396
Author(s):  
Debra Higley ◽  
Catherine Enomoto

Nine 1D burial history models were built across the Appalachian basin to reconstruct the burial, erosional, and thermal maturation histories of contained petroleum source rocks. Models were calibrated to measured downhole temperatures, and to vitrinite reflectance (% Ro) data for Devonian through Pennsylvanian source rocks. The highest levels of thermal maturity in petroleum source rocks are within and proximal to the Rome trough in the deep basin, which are also within the confluence of increased structural complexity and associated faulting, overpressured Devonian shales, and thick intervals of salt in the underlying Silurian Salina Group. Models incorporate minor erosion from 260 to 140 million years ago (Ma) that allows for extended burial and heating of underlying strata. Two modeled times of increased erosion, from 140 to 90 Ma and 23 to 5.3 Ma, are followed by lesser erosion from 5.3 Ma to Present. Absent strata are mainly Permian shales and sandstone; thickness of these removed layers increased from about 6200 ft (1890 m) west of the Rome trough to as much as 9650 ft (2940 m) within the trough. The onset of oil generation based on 0.6% Ro ranges from 387 to 306 Ma for the Utica Shale, and 359 to 282 Ma for Middle Devonian to basal Mississippian shales. The ~1.2% Ro onset of wet gas generation ranges from 360 to 281 Ma in the Utica Shale, and 298 to 150 Ma for Devonian to lowermost Mississippian shales.


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Santiago Moliner-Aznar ◽  
Manuel Martín-Martín ◽  
Tomás Rodríguez-Estrella ◽  
Gregorio Romero-Sánchez

The Cenozoic Malaguide Basin from Sierra Espuña (Internal Betic Zone, S Spain) due to the quality of outcropping, areal representation, and continuity in the sedimentation can be considered a key-basin. In the last 30 years, a large number of studies with very different methodological approaches have been done in the area. Models indicate an evolution from passive margin to wedge-top basin from Late Cretaceous to Early Miocene. Sedimentation changes from limestone platforms with scarce terrigenous inputs, during the Paleocene to Early Oligocene, to the deep basin with huge supplies of turbidite sandstones and conglomerates during the Late Oligocene to Early Miocene. The area now appears structured as an antiformal stack with evidence of synsedimentary tectonics. The Cenozoic tectono-sedimentary basin evolution is related to three phases: (1) flexural tectonics during most of the Paleogene times to create the basin; (2) fault and fold compartmentation of the basin with the creation of structural highs and subsiding areas related to blind-fault-propagation folds, deforming the basin from south to north during Late Oligocene to Early Aquitanian times; (3) thin-skin thrusting tectonics when the basin began to be eroded during the Late Aquitanian-Burdigalian. In recent times some works on the geological heritage of the area have been performed trying to diffuse different geological aspects of the sector to the general public. A review of the studies performed and the revisiting of the area allow proposing different key-outcrops to follow the tectono-sedimentary evolution of the Cenozoic basin from this area. Eight sites of geological interest have been selected (Cretaceous-Cenozoic boundary, Paleocene Mula Fm, Lower Eocene Espuña-Valdelaparra Fms, Middle Eocene Malvariche-Cánovas Fms, Lowermost Oligocene As Fm, Upper Oligocene-Lower Aquitanian Bosque Fm, Upper Oligocene-Aquitanian Río Pliego Fm, Burdigalian El Niño Fm) and an evaluation has been performed to obtain four parameters: the scientific value, the educational and touristic potential, and the degradation risk. The firsts three parameters obtained values above 50 being considered of “high” or “very high” interest (“very high” in most of the cases). The last parameter shows always values below 50 indicating a “moderate” or “low” risk of degradation. The obtained values allow us considering the tectono-sedimentary evolution of this basin worthy of being proposed as a geological heritage.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Philip J. Bart ◽  
Matthew DeCesare ◽  
Brad E. Rosenheim ◽  
Wojceich Majewski ◽  
Austin McGlannan
Keyword(s):  
Ross Sea ◽  

Author(s):  
D.J. Hughes ◽  
S.J. Marrs ◽  
C.J. Smith ◽  
R.J.A. Atkinson

Towed underwater TV observations at 440 m in the northern Evoikos Gulf, Greece, revealed a soft mud plain heavily bioturbated by the thalassinidean Calocaris macandreae, with Callianassa subterranea and Nephrops norvegicus also present. Ejecta mounds and feeding traces indicated the presence of a large echiuran, provisionally identified as Maxmuelleria gigas. The locality also supported a dense population of a second echiuran, Bonellia viridis, a species not previously recorded as an inhabitant of sedimentary environments.


2021 ◽  
Author(s):  
Amena Dhawi Alharthi ◽  
Pierre Van Laer ◽  
Trevor Brooks ◽  
Pierre Olivier Goiran ◽  
Muhammad Zeeshan Baig ◽  
...  

Abstract The development of unconventional target in the Shilaif formation is in line with the Unconventional objective towards adding to ADNOC reserves. For future optimization of development plans, it is of utmost importance to understand and test and therefore prove the productivity of the future Unconventional Horizontal Oil wells. The Shilaif formation was deposited in a deeper water intrashelf basin with thicknesses varying from 600 to 800 ft from deep basin to slope respectively. The formation is subdivided into 3 main composite sequences each with separate source and clean tight carbonates. The well under consideration (Well A-V for the vertical pilot and Well A-H for the horizontal wellbore) was drilled on purpose in a deep synclinal area to access the best possible oil generation and maturity in these shale Oil plays. Due to the stacked nature of these thick high-quality reservoirs, a pilot well is drilled to perform reservoir characterization and test hydrocarbon type and potential from each bench. Fracturing and testing are performed in each reservoir layer for the primary purpose to evaluate and collect key fracturing and reservoir parameter required to calibrate petrophysical and geomechanical model, landing target optimization and ultimately for the design of the development plan of this stacked play. Frac height, reservoir fluid composition and deliverability, pore pressure are among key data collected. The landing point selected based on the comprehensive unconventional core analysis integrated with petrophysical and geomechanical outcomes using post vertical frac and test results. Well A-H was drilled as a sidetrack from the pilot hole Well A-V. This lateral section was logged with LWD Triple Combo while Resistivity Image was acquired on WL. Based on the logging data the well stayed in the target Layer / formation, cutting analysis data for XRD and TOC was integrated with the petrophysical results in A-H well. Production test results from subject were among the highest rate seen during exploration and appraisal of this unconventional oil plays and compete with the current commercial top tier analog unconventional oil plays. Achieving those results in such early exploration phases is huge milestone for ADNOC unconventional exploration journey in UAE and sign of promising future development.


2021 ◽  
Author(s):  
Simon Blondel ◽  
Angelo Camerlenghi ◽  
Anna Del Ben ◽  
Massimo Bellucci

<p>This study presents the interpretation of reprocessed seismic data covering the southwestern Balearic promontory and the central Algerian basin. The new depth processing of 2D seismic lines dataset allows for the first time a good resolution on salt structures in the deep basin. Most of the salt structures result from active diapirism. In the deep basin, sedimentary loads and regional shortening are proposed to be the dominant driving forces, showing an overall contractional salt system. The north Algerian margin tectonic reactivation could have provoked a regional shortening of the salt structures and overburden. Identified unconformities suggest that this process probably started shortly after salt deposition and is still active nowadays. It is expressed by salt sheets, pinched diapirs and a décollement level. The African convergence and the narrowness of the western Algerian basin could be the explanation of an overall greater salt deformation intensity compared to the eastern Algerian basin. This demonstrates how in tectonic and sedimentary components appear to be dominant in salt deformation in the central Algerian basin compared to gravitational gliding, only localized in the proximal parts of the margin.</p>


SEG Discovery ◽  
2020 ◽  
pp. 15-21
Author(s):  
Dave Shatwell

Abstract The Woodcutters Zn-Pb-Ag deposit in the Rum Jungle district of the Pine Creek orogen in northern Australia was discovered in 1964 and produced 4.6 Mt of ore grading 12.3% Zn, 5.6% Pb, and 83 g/t Ag between 1985 and 1999. Woodcutters, together with several other polymetallic, uranium, and phosphate deposits, is within a Paleoproterozoic sequence of fluviatile and shallow marine sediments deposited in a deepening basin between ~2100 and 2025 Ma around the margins of an Archean granitic and gneissic dome. These sediments were overlain by turbidites and volcaniclastic rocks until the basin was inverted and the sediments and mineral deposits were deformed and metamorphosed at 1860 Ma. Whereas the polymetallic and uranium bodies at Rum Jungle are considered to be syngenetic or syndiagenetic, sulfides in the Woodcutters orebody replace dolomitic horizons in an otherwise carbonaceous unit. This suggests that Woodcutters is similar to Mississippi Valley-type mineralization and rules out affinities with younger sedimentary exhalative-style deposits elsewhere in the Pine Creek orogen. A model is proposed whereby metals were eroded from Archean basement rocks into Paleoproterozoic sandstone aquifers following the Great Oxidation Event, which also liberated sulfur by oxidation of pyrite. Evaporative conditions, as suggested by the widespread occurrence of dolomite and magnesite, may have increased the chloride content of seawater and enhanced its capacity to transport metals. Subsequently, deeply circulating seawater leached metals from the aquifers and ascended up a deep, basin-penetrating fault until it intersected carbonaceous sediments. In this environment, Zn and Pb sulfides were deposited under reducing conditions, while sulfur may have been provided by H2S from organic material. The Woodcutters and other deposits at Rum Jungle show how metals formerly locked up in Archean cratons were delivered by erosion under an oxygenated atmosphere to Paleoproterozoic shorelines, where they were further mobilized and concentrated by a variety of processes.


Sign in / Sign up

Export Citation Format

Share Document