Woodcutters 55 Years Later: A New Look at an Old Discovery

SEG Discovery ◽  
2020 ◽  
pp. 15-21
Author(s):  
Dave Shatwell

Abstract The Woodcutters Zn-Pb-Ag deposit in the Rum Jungle district of the Pine Creek orogen in northern Australia was discovered in 1964 and produced 4.6 Mt of ore grading 12.3% Zn, 5.6% Pb, and 83 g/t Ag between 1985 and 1999. Woodcutters, together with several other polymetallic, uranium, and phosphate deposits, is within a Paleoproterozoic sequence of fluviatile and shallow marine sediments deposited in a deepening basin between ~2100 and 2025 Ma around the margins of an Archean granitic and gneissic dome. These sediments were overlain by turbidites and volcaniclastic rocks until the basin was inverted and the sediments and mineral deposits were deformed and metamorphosed at 1860 Ma. Whereas the polymetallic and uranium bodies at Rum Jungle are considered to be syngenetic or syndiagenetic, sulfides in the Woodcutters orebody replace dolomitic horizons in an otherwise carbonaceous unit. This suggests that Woodcutters is similar to Mississippi Valley-type mineralization and rules out affinities with younger sedimentary exhalative-style deposits elsewhere in the Pine Creek orogen. A model is proposed whereby metals were eroded from Archean basement rocks into Paleoproterozoic sandstone aquifers following the Great Oxidation Event, which also liberated sulfur by oxidation of pyrite. Evaporative conditions, as suggested by the widespread occurrence of dolomite and magnesite, may have increased the chloride content of seawater and enhanced its capacity to transport metals. Subsequently, deeply circulating seawater leached metals from the aquifers and ascended up a deep, basin-penetrating fault until it intersected carbonaceous sediments. In this environment, Zn and Pb sulfides were deposited under reducing conditions, while sulfur may have been provided by H2S from organic material. The Woodcutters and other deposits at Rum Jungle show how metals formerly locked up in Archean cratons were delivered by erosion under an oxygenated atmosphere to Paleoproterozoic shorelines, where they were further mobilized and concentrated by a variety of processes.

2020 ◽  
Vol 242 ◽  
pp. 150
Author(s):  
Ivan YATSENKO ◽  
Sergey SKUBLOV ◽  
Ekaterina LEVASHOVA ◽  
Olga GALANKINA ◽  
Sergey BEKESHA

The article presents the results of studying the rocks of the pyroclastic facies of the Mriya lamproite pipe, located on the Priazovsky block of the Ukrainian shield. In them the rock's mineral composition includes a complex of exotic mineral particles formed under extreme reduction mantle conditions: silicate spherules, particles of native metals and intermetallic alloys, oxygen-free minerals such as diamond, qusongite (WC), and osbornite (TiN). The aim of the research is to establish the genesis of volcaniclastic rocks and to develop ideas of the highly deoxidized mantle mineral association (HRMMA), as well as to conduct an isotopic and geochemical study of zircon. As a result, groups of minerals from different sources are identified in the heavy fraction: HRMMA can be attributed to the juvenile magmatic component of volcaniclastic rocks; a group of minerals and xenoliths that can be interpreted as xenogenic random material associated with mantle nodules destruction (hornblendite, olivinite and dunite xenoliths), intrusive lamproites (tremolite-hornblende) and crystalline basement rocks (zircon, hornblende, epidote, and granitic xenoliths). The studied volcaniclastic rocks can be defined as intrusive pyroclastic facies (tuffisites) formed after the lamproites intrusion. Obviously, the HRMMA components formed under extreme reducing conditions at high temperatures, which are characteristic of the transition core-mantle zone. Thus, we believe that the formation of primary metal-silicate HRMMA melts is associated with the transition zone D".


2021 ◽  
pp. jgs2021-035
Author(s):  
Wanchese M. Saktura ◽  
Solomon Buckman ◽  
Allen P. Nutman ◽  
Renjie Zhou

The Jurassic–Cretaceous Tsoltak Formation from the eastern borderlands of Ladakh Himalaya consists of conglomerates, sandstones and shales, and is intruded by norite sills. It is the oldest sequence of continent-derived sedimentary rocks within the Shyok Suture. It also represents a rare outcrop of the basement rocks to the voluminous Late Cretaceous–Eocene Ladakh Batholith. The Shyok Formation is a younger sequence of volcaniclastic rocks that overlie the Tsoltak Formation and record the Late Cretaceous closure of the Mesotethys Ocean. The petrogenesis of these formations, ophiolite-related harzburgites and norite sill is investigated through petrography, whole-rock geochemistry and U–Pb zircon geochronology. The youngest detrital zircon grains from the Tsoltak Formation indicate Early Cretaceous maximum depositional age and distinctly Gondwanan, Lhasa microcontinent-related provenance with no Eurasian input. The Shyok Formation has Late Cretaceous maximum depositional age and displays a distinct change in provenance to igneous detritus characteristic of the Jurassic–Cretaceous magmatic arc along the southern margin of Eurasia. This is interpreted as a sign of collision of the Lhasa microcontinent and the Shyok ophiolite with Eurasia along the once continuous Shyok–Bangong Suture. The accreted terranes became the new southernmost margin of Eurasia and the basement to the Trans-Himalayan Batholith associated with the India-Eurasia convergence.Supplementary material:https://doi.org/10.6084/m9.figshare.c.5633162


2015 ◽  
Vol 61 (9) ◽  
pp. 691-699 ◽  
Author(s):  
Dan Qu ◽  
Yongsheng Zhao ◽  
Jiaqiang Sun ◽  
Hejun Ren ◽  
Rui Zhou

Benzene, toluene, ethylbenzene, and xylene (BTEX) are of great environmental concern because of their widespread occurrence in groundwater and soil, posing an increasing threat to human health. The aerobic denitrifying BTEX-degrading bacterium Pseudomonas thivervalensis MAH1 was isolated from BTEX-contaminated sediment under nitrate-reducing conditions. The degradation rates of benzene, toluene, ethylbenzene, and xylene by strain MAH1 were 4.71, 6.59, 5.64, and 2.59 mg·L−1·day−1, respectively. The effects of sodium citrate, nitrate, and NaH2PO4on improving BTEX biodegradation were investigated, and their optimum concentrations were 0.5 g·L−1, 100 mg·L−1, and 0.8 mmol·L−1, respectively. Moreover, MAH1, which has nirS and nosZ genes, removed ammonium, nitrate, and nitrite at 2.49 mg NH4+-N·L−1·h−1, 1.50 mg NO3−-N·L−1·h−1, and 0.83 mg NO2−-N·L−1·h−1, respectively. MAH1 could help in mitigating the pollution caused by nitrogen amendments for biostimulation. This study highlighted the feasibility of using MAH1 for the bioremediation of BTEX-contaminated sites.


2020 ◽  
pp. 375-397
Author(s):  
David A. Rhys ◽  
Nadia St. Jean ◽  
Rodolfo Lagos ◽  
David Emmons ◽  
George A. Schroer ◽  
...  

Abstract The Round Mountain low-sulfidation epithermal Au deposit occurs within the rhyolitic tuff of Round Mountain (26.86 Ma) on the northeast side of an elliptical volcanic center that has morphology and volcanic facies suggesting it originated as a caldera. The hosting tuff comprises three pyroclastic flow and fall deposits (units T1 to T3). These are overlain successively by lacustrine sediments and volcaniclastic rocks. which may contain paleowater table levels formed at the time of ore formation and a 26.4 Ma postmineralization tuff unit. A linear vertical drop in the basement contact coincides with thick tuff fill and megabreccia, which is interpreted to follow the position of a WNW-trending ring fissure or vent wall that may have focused the locations of subsequent hydrothermal upflow zones. Orebodies are developed in strata-bound zones that are most extensive in poorly welded tuff, focused below overlying impermeable welded tuff in a WNW-trending, gently NW-plunging corridor above and mantling the SW-dipping paleoslope of basement rocks. Ore comprises disseminated pervasive adularia-quartz-pyrite ± illite alteration with electrum. The disseminated mineralization surrounds, and is most intensely developed in association with, a low-displacement extensional fault-vein network composed of conjugate NE- and SW-dipping faults and steeply dipping extensional veins. Vein orientations and kinematic indicators suggest ore formation occurred during localized NE-SW-directed extension that may have been related to late stages of volcanic subsidence, potentially in association with deep resurgent magmatism into ring fissures approximately 0.5 m.y. after deposition of the host tuff sequence.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Hongsheng Gong ◽  
Runsheng Han ◽  
Peng Wu ◽  
Gang Chen ◽  
Lingjie Li

The Laoyingqing Pb–Zn deposit is located on the southwestern margin of the Yangtze block and on the east side of the Xiaojiang deep fault in the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic triangle area (SYGT). This deposit was first discovered in the silty and carbonaceous slate of the Middle Proterozoic Kunyang Group that is structurally controlled by thrust faults and anticlines. This study is aimed at investigating whether the Laoyingqing deposit has the same ore-forming age and type as other Pb–Zn deposits related to the Pb–Zn metallogenic system and prospecting prediction of the deep and peripheral areas of the deposits in the SYGT. Based on the sphalerite Rb–Sr age dating and S–Sr–Pb isotopic composition analysis of the Laoyingqing Pb–Zn deposit, the following results were obtained. First, the Rb–Sr isochron age of sphalerite is 209.8 ± 5.2 million years (Ma), consistent with the ages of most Pb–Zn deposits in the SYGT (approximately 200Ma), thereby potentially indicating that these Pb–Zn deposits may have been formed synchronously during the late Indosinian orogeny. Second, the Pb isotopic compositions of sulfides show a linear trend on the average crustal Pb evolution curve in 207Pb/204Pb vs. 206Pb/204Pb plot. In addition, Pb isotopic ratios were consistent with the age-corrected Pb isotopic ratios of basement rocks, consequently suggesting that the source of mixed crustal Pb is mainly derived from basement rocks. Combined with the initial 87Sr/86Sr ratios of sphalerite between the (87Sr/86Sr)200Ma value of the basement rocks and that of the Upper Sinian–Permian carbonates, it can be concluded that the ore-forming metals were mainly derived from basement rocks. Third, sulfur isotopic composition of sphalerite from the Laoyingqing deposits shows δ34SCDT values that range mainly from -2.62‰ to 1.42‰, which is evidently lower than the δ34SCDT values of sulfides (8–20‰) from other Pb–Zn deposits in the SYGT. This can be interpreted as a result of mixing with reduced S that was mainly derived from the thermochemically reduced S in the overlying strata and a small amount of reduced S produced by the pyrolysis of S-containing organic matter. We conclude that the Laoyingqing deposit and most of the Pb–Zn deposits in the SYGT are Mississippi Valley-type deposits, thereby providing new ideas for investigating the deep and peripheral areas of Pb–Zn deposits.


Uranium deposits occur in association with igneous, sedimentary and metamorphic rocks. The bulk of low-cost reserves, however, occurs in Precambrian rocks or in Phanerozoic sediments immediately overlying the basement. In basement rocks, as well as in more recent rocks, major uranium deposits are spatially associated with leucogranites. In Phanerozoic sediments, close to the basement uranium is enriched in continental clastic formations under reducing conditions. Favourable lithologies are alternating horizons of clay and sandstone containing carbonaceous matter. Metamorphic developments are associated with zones of crustal thickening with a world-wide era of concentration at around 1900-1700 Ma ago. Uranium is also enriched in more recent metamorphosed clastic sediments. Deposits directly associated with igneous rocks tend to occur in unsaturated facies rich in volatiles. Granitic and alaskitic pegmatites also carry economic amounts of uranium. The most important secondary deposits of recent origin are those occurring in carbonateor sulphate-cemented sediments.


1976 ◽  
Vol 13 (2) ◽  
pp. 312-318 ◽  
Author(s):  
M. J. Keen ◽  
D. J. W. Piper

St. Margaret's Bay is one of the bays of the Atlantic coast of Nova Scotia, which owes its present form to flooding as sea level rose following deglaciation. It has a central, rather flat, deep basin, separated from the shelf by a sill. Two metres or so below the central basin floor lies a prominent acoustic reflector, not due to lithological changes within the sediment. We suggest that this is caused by gas, in part at least methane. Methane content increases with depth in sediment cores, and could be present in gaseous form (not just dissolved). There is a concomitant decrease in organic carbon with depth, and it appears that a part of this carbon is responsible for the generation of methane under reducing conditions below 2 m or so. The source of the organic carbon could be kelp, produced in abundance in the Bay, which has a very high primary productivity.


Author(s):  
D.F. Blake ◽  
LJ. Allamandola ◽  
G. Palmer ◽  
A. Pohorille

The natural history of the biogenic elements H, C, N, O, P and S in the cosmos is of great interest because it is these elements which comprise all life. Material ejected from stars (or pre-existing in the interstellar medium) is thought to condense into diffuse bodies of gravitationally bound gas and dust called cold interstellar molecular clouds. Current theories predict that within these clouds, at temperatures of 10-100° K, gases (primarily H2O, but including CO, CO2, CH3OH, NH3, and others) condense onto submicron silicate grains to form icy grain mantles. This interstellar ice represents the earliest and most primitive association of the biogenic elements. Within these multicomponent icy mantles, pre-biotic organic compounds are formed during exposure to UV radiation. It is thought that icy planetesimals (such as comets) within our solar system contain some pristine interstellar material, including ices, and may have (during the early bombardment of the solar system, ∼4 Ga) carried this material to Earth.Despite the widespread occurrence of astrophysical ices and their importance to pre-biotic organic evolution, few experimental data exist which address the relevant phase equilibria and possible structural states. A knowledge of the petrology of astrophysical ice analogs will allow scientists to more confidently interpret astronomical IR observations. Furthermore, the development and refinement of procedures for analyzing ices and other materials at cryogenic temperatures is critical to the study of materials returned from the proposed Rosetta comet nucleus and Mars sample return missions.


1998 ◽  
Vol 79 (01) ◽  
pp. 177-185 ◽  
Author(s):  
Ashia Siddiqua ◽  
Michael Wilkinson ◽  
Vijay Kakkar ◽  
Yatin Patel ◽  
Salman Rahman ◽  
...  

SummaryWe report the characterization of a monoclonal antibody (MAb) PM6/13 which recognises glycoprotein IIIa (GPIIIa) on platelet membranes and in functional studies inhibits platelet aggregation induced by all agonists examined. In platelet-rich plasma, inhibition of aggregation induced by ADP or low concentrations of collagen was accompanied by inhibition of 5-hydroxytryptamine secretion. EC50 values were 10 and 9 [H9262]g/ml antibody against ADP and collagen induced responses respectively. In washed platelets treated with the cyclooxygenase inhibitor, indomethacin, PM6/13 inhibited platelet aggregation induced by thrombin (0.2 U/ml), collagen (10 [H9262]g/ml) and U46619 (3 [H9262]M) with EC50 = 4, 8 and 4 [H9262]g/ml respectively, without affecting [14C]5-hydroxytryptamine secretion or [3H]arachidonate release in appropriately labelled cells. Studies in Fura 2-labelled platelets revealed that elevation of intracellular calcium by ADP, thrombin or U46619 was unaffected by PM6/13 suggesting that the epitope recognised by the antibody did not influence Ca2+ regulation. In agreement with the results from the platelet aggregation studies, PM6/13 was found to potently inhibit binding of 125I-fibrinogen to ADP activated platelets. Binding of this ligand was also inhibited by two other MAbs tested, namely SZ-21 (also to GPIIIa) and PM6/248 (to the GPIIb-IIIa complex). However when tested against binding of 125I-fibronectin to thrombin stimulated platelets, PM6/13 was ineffective in contrast with SZ-21 and PM6/248, that were both potent inhibitors. This suggested that the epitopes recognised by PM6/13 and SZ-21 on GPIIIa were distinct. Studies employing proteolytic dissection of 125I-labelled GPIIIa by trypsin followed by immunoprecipitation with PM6/13 and analysis by SDS-PAGE, revealed the presence of four fragments at 70, 55, 30 and 28 kDa. PM6/13 did not recognize any protein bands on Western blots performed under reducing conditions. However Western blotting analysis with PM6/13 under non-reducing conditions revealed strong detection of the parent GP IIIa molecule, of trypsin treated samples revealed recognition of an 80 kDa fragment at 1 min, faint recognition of a 60 kDa fragment at 60 min and no recognition of any product at 18 h treatment. Under similar conditions, SZ-21 recognized fragments at 80, 75 and 55 kDa with the 55kDa species persisting even after 18 h trypsin treatment. These studies confirm the epitopes recognised by PM6/13 and SZ-21 to be distinct and that PM6/13 represents a useful tool to differentiate the characteristics of fibrinogen and fibronectin binding to the GPIIb-IIIa complex on activated platelets.


Sign in / Sign up

Export Citation Format

Share Document