scholarly journals Rapid clay precipitation in explosion-induced fractures

Geology ◽  
2019 ◽  
Vol 47 (12) ◽  
pp. 1176-1180 ◽  
Author(s):  
Erika Swanson ◽  
Aviva Sussman ◽  
Jennifer Wilson

Abstract Fractures within the earth control rock strength and fluid flow, but their dynamic nature is not well understood. As part of a series of underground chemical explosions in granite in Nevada, we collected and analyzed microfracture density data sets prior to, and following, individual explosions. Our work shows an ∼4-fold increase in both open and filled microfractures following the explosions. Based on the timing of core retrieval, filling of some new fractures occurs in as little as 6 wk after fracture opening under shallow (<100 m) crustal conditions. These results suggest that near-surface fractures may fill quite rapidly, potentially changing permeability on time scales relevant to oil, gas, and geothermal energy production; carbon sequestration; seismic cycles; and radionuclide migration from nuclear waste storage and underground nuclear explosions.

Author(s):  
Keith D. Koper ◽  
Monique M. Holt ◽  
Jonathan R. Voyles ◽  
Relu Burlacu ◽  
Moira L. Pyle ◽  
...  

ABSTRACT Seismologists distinguish underground nuclear explosions from more commonly occurring earthquakes using moment tensor inversion, high-frequency P/S amplitude ratios, mb:Ms comparisons, and P-pP differential travel times. These methods are generally successful for large seismic events (M&gt;3–4) well recorded at regional-to-teleseismic distances (&gt;150  km); however, it is unclear whether they can be modified to work for small events (M&lt;3) well recorded only at local distances (&lt;150  km). Here, we evaluate a recently proposed, local-distance seismic source discriminant—the difference between local magnitude (ML) and coda duration magnitude (MC)—using seismograms of earthquakes and buried, single-fired chemical explosions recorded in three regions of the western United States. The quantity ML–MC was previously found to be sensitive to source depth, effectively discriminating mine blasts, induced earthquakes, and very shallow tectonic earthquakes from deeper crustal earthquakes. In this study, we report the first evaluation of ML–MC as a depth discriminant using data from buried, single-fired explosions that, unlike the seismic sources studied earlier, are good analogs for underground nuclear explosions. We find that even when using generic, uncalibrated methods of assigning magnitudes, ML–MC separates single-fired explosions and earthquakes. The area under the receiver operating characteristic curve is 0.92 for 19 explosions and 14 earthquakes in Washington, 0.90 for 22 explosions and 90 earthquakes in Wyoming, and 0.99 for three explosions and 149 earthquakes in Nevada. ML:MC comparisons have the potential to enhance discrimination based on high-frequency P/S amplitudes ratios—which perform less well at local than regional distances—because the two metrics have complementary sensitivities.


Geophysics ◽  
1966 ◽  
Vol 31 (6) ◽  
pp. 1057-1065 ◽  
Author(s):  
I. N. Gupta ◽  
C. Kisslinger

Amplitude distributions obtained from field observations of the azimuthal distribution of motion from cratering shots near a vertical face in a limestone section yielded data on radiation into a half‐space. These effects have been approximately reproduced in the laboratory by means of two‐dimensional seismic models. Small chemical explosions were fired on or near the edge of a large plexiglas sheet and the radiation of both P and S waves observed. Shots on the edge of the model sheet produce P and S radiation patterns expected from a normal downward impulse on the free surface. The radiation patterns from cratering shots may be qualitatively explained by the combined action on the free surface of a normal downward stress and a pair of horizontal stresses (dipole without moment) at the source point. The observed data are not sufficient for verifying theoretical S wave distributions. Observations of SV amplitudes from nuclear explosions could yield useful information concerning the relation between the angle at which the waves leave the source and the distance at which the wave emerges.


Author(s):  
T. E. Mitchell ◽  
M. R. Pascucci ◽  
R. A. Youngman

1. Introduction. Studies of radiation damage in ceramics are of interest not only from a fundamental point of view but also because it is important to understand the behavior of ceramics in various practical radiation enyironments- fission and fusion reactors, nuclear waste storage media, ion-implantation devices, outer space, etc. A great deal of work has been done on the spectroscopy of point defects and small defect clusters in ceramics, but relatively little has been performed on defect agglomeration using transmission electron microscopy (TEM) in the same kind of detail that has been so successful in metals. This article will assess our present understanding of radiation damage in ceramics with illustrations using results obtained from the authors' work.


2021 ◽  
Author(s):  
Ronald Joseph Turner ◽  
Pieter Bots ◽  
Alan Richardson ◽  
Paul Bingham ◽  
Alex Scrimshire ◽  
...  

(Hydroxy)apatite [Ca10(PO4)6(OH)2], has emerging potential as a cement coating material, with applications in environmental remediation, nuclear waste storage and architectural preservation. In these low temperature environments and when precipitating from...


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3709
Author(s):  
Bader Alshuraiaan ◽  
Sergey Pushkin ◽  
Anastasia Kurilova ◽  
Magdalena Mazur

Recently, issues related to the effects (benefit or harm) of processing nuclear waste and its further use as fuel have been increasingly often raised in the scientific discussion. In this regard, the research aims to investigate issues related to the assessment of the economic potential of nuclear waste use, as well as the cooperation between states in the context of the reduction of risks associated with nuclear waste storage and processing. The research methodology is based on an integrated approach, including statistical, factor analysis, and the proposed system of performance indicators for managing spent nuclear fuel use. The research was carried out on the basis of materials from Russia and the EU countries. In the course of the study, a model of cooperation between states has been developed (based on the example of technologies and methods of processing nuclear waste used in the EU and Russia) according to the nuclear waste (spent nuclear fuel) management algorithm. The model considers the risks and threats associated with ecology and safety. The developments and other results described in the study should be used in further research devoted to the use of nuclear waste as heat-producing elements.


2020 ◽  
Author(s):  
Dylan Robert Harp ◽  
Suzanne Michelle Bourret ◽  
Philip H. Stauffer ◽  
Ed Michael Kwicklis

Sign in / Sign up

Export Citation Format

Share Document