scholarly journals Rapid retreat of the southwestern Laurentide Ice Sheet during the Bølling-Allerød interval

Geology ◽  
2021 ◽  
Author(s):  
Sophie Norris ◽  
Lev Tarasov ◽  
Alistair J. Monteath ◽  
John C. Gosse ◽  
Alan J. Hidy ◽  
...  

The timing of Laurentide Ice Sheet deglaciation along its southwestern margin controlled the evolution of large glacial lakes and has implications for human migration into the Americas. Accurate reconstruction of the ice sheet’s retreat also constrains glacial isostatic adjustment models and is important for understanding ice-sheet sensitivity to climate forcing. Despite its significance, retreat of the southwestern Laurentide Ice Sheet (SWLIS) is poorly constrained by minimum-limiting 14C data. We present 26 new cosmogenic 10Be exposure ages spanning the western Interior Plains, Canada. Using a Bayesian framework, we combine these data with geomorphic mapping, 10Be, and high-quality minimum-limiting 14C ages to provide an updated chronology. This dataset presents an internally consistent retreat record and indicates that the initial detachment of the SWLIS from its convergence with the Cordilleran Ice Sheet began by ca. 15.0 ka, concurrent with or slightly prior to the onset of the Bølling-Allerød interval (14.7–12.9 ka) and retreated >1200 km to its Younger Dryas (YD) position in ~2500 yr. Ice-sheet stabilization at the Cree Lake Moraine facilitated a meltwater drainage route to the Arctic from glacial Lake Agassiz within the YD, but not necessarily at the beginning. Our record of deglaciation and new YD constraints demonstrate deglaciation of the Interior Plains was ~60% faster than suggested by minimum 14C constraints alone. Numerical modeling of this rapid retreat estimates a loss of ~3.7 m of sea-level equivalent from the SWLIS during the Bølling-Allerød interval.

2010 ◽  
Vol 29 (25-26) ◽  
pp. 3630-3643 ◽  
Author(s):  
Arjen P. Stroeven ◽  
Derek Fabel ◽  
Alexandru T. Codilean ◽  
Johan Kleman ◽  
John J. Clague ◽  
...  

1992 ◽  
Vol 29 (11) ◽  
pp. 2418-2425 ◽  
Author(s):  
A. Mark Tushingham

Churchill, Manitoba, is located near the centre of postglacial uplift caused by the Earth's recovery from the melting of the Laurentide Ice Sheet. The value of present-day uplift at Churchill has important implications in the study of postglacial uplift in that it can aid in constraining the thickness of the ice sheet and the rheology of the Earth. The tide-gauge record at Churchill since 1940 is examined, along with nearby Holocene relative sea-level data, geodetic measurements, and recent absolute gravimetry measurements, and a present-day rate of uplift of 8–9 mm/a is estimated. Glacial isostatic adjustment models yield similar estimates for the rate of uplift at Churchill. The effects of the tide-gauge record of the diversion of the Churchill River during the mid-1970's are discussed.


2007 ◽  
Vol 68 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Brent C. Ward ◽  
Jeffrey D. Bond ◽  
John C. Gosse

AbstractCosmogenic 10Be ages on boulders of 54–51 ka (n=4) on a penultimate Cordilleran ice sheet (CIS) drift confirm that Marine Oxygen Isotope Stage (MIS) 4 (early Wisconsin) glaciation was extensive in parts of Yukon Territory, the first confirmed evidence in the Canadian Cordillera. We name the glaciation inferred from the mapped and dated drift the Gladstone. These results are in apparent contrast to the MIS 6 (Illinoian) age of the penultimate Reid glaciation to the east in central Yukon but are equivalent to exposure ages on MIS 4 drift in Alaska. Contrasting penultimate ice extents in Yukon requires that different source areas of the northern CIS in Yukon responded differently to climatic forcing during glaciations. The variation in glacier extent for different source areas likely relates to variation in precipitation during glaciation, as the northern CIS was a precipitation-limited system. Causes for a variation in precipitation remain unclear but likely involve the style of precipitation delivery over the St. Elias Mountains possibly related to variations in the Aleutian low.


2007 ◽  
Vol 44 (4) ◽  
pp. 445-457 ◽  
Author(s):  
Jan M Bednarski ◽  
I Rod Smith

Mapping the surficial geology of the Trutch map area (NTS 94G) provides new data on the timing of continental and montane glaciations along the Foothills of northeastern British Columbia. Striated surfaces on mountain crests were dated to the Late Wisconsinan substage by cosmogenic dating. The striations were produced by eastward-flowing ice emanating from the region of the Continental Divide. This ice was thick enough to cross the main ranges and overtop the Rocky Mountain Foothill summits at 2000 m above sea level (asl). It is argued here that such a flow, unhindered by topography, could only have been produced by the Cordilleran Ice Sheet and not by local cirque glaciation. During this time, the Cordilleran Ice Sheet dispersed limestone and schist erratics of western provenance onto the plains beyond the mountain front. Conversely, the Laurentide Ice Sheet did not reach its western limit in the Foothills until after Cordilleran ice retreated from the area. During its maximum, the Laurentide ice penetrated the mountain valleys up to 17 km west of the mountain front, and deposited crystalline erratics from the Canadian Shield as high as 1588 m asl along the Foothills. In some valleys a smaller montane advance followed the retreat of the Laurentide Ice Sheet.


2020 ◽  
Author(s):  
Christopher Halsted ◽  
Jeremy Shakun ◽  
Lee Corbett ◽  
Paul Bierman ◽  
P. Thompson Davis ◽  
...  

<p>In the northeastern United States, there are extensive geochronologic and geomorphic constraints on the deglaciation of the southeastern Laurentide Ice Sheet; thus, it is an ideal area for large-scale ice volume reconstructions and comparison between different ice retreat chronometers. Varve chronologies, lake and bog-bottom radiocarbon ages, and cosmogenic nuclide exposure ages constrain the timing of ice retreat, but the inferred ages exhibit considerable noise and sometimes disagree. Additionally, there are few empirical constraints on ice thinning, forcing ice volume reconstructions to rely on geophysically-based ice thickness models. Here, we aim to improve the understanding of the southeastern Laurentide Ice Sheet recession by (1) adding extensive ice thickness constraints and (2) compiling all available deglacial chronology data in the region to investigate discrepancies between different chronometers.</p><p>To provide insight about ice sheet thinning history, we collected 120 samples for in-situ <sup>10</sup>Be and 10 samples for in-situ <sup>14</sup>C cosmogenic exposure dating from various elevations at 13 mountains in the northeastern United States. By calculating ages of exposure at different elevations across this region, we reconstruct paleo-ice surface lowering of the southeastern Laurentide Ice Sheet during deglaciation. Where we suspect that <sup>10</sup>Be remains from pre-Last Glacial Maximum periods of exposure, in-situ <sup>14</sup>C is used to infer the erosional history and minimum exposure age of samples.</p><p>Presently, we have measured <sup>10</sup>Be in 73 samples. Mountain-top exposure ages located within 150 km of the southeastern Laurentide Ice Sheet terminal moraine indicate that near-margin thinning began early in the deglacial period (~19.5 to 17.5 ka), coincident with the slow initial margin retreat indicated by varve records. Exposure ages from several mountains further inland (>400 km north of terminal moraine) collected over ~1000 m of elevation range record rapid ice thinning between 14.5 and 13 ka. Ages within each of these vertical transects are similar within 1σ internal uncertainty, indicating that ice thinned quickly, less than a few hundred years at most. This rapid thinning occurred at about the same time that varve records indicate accelerated ice margin retreat (14.6–12.9 ka), providing evidence of substantial ice volume loss during the Bølling-Allerød warm period.</p><p>Our critical evaluation of deglacial chronometers, including valley-bottom <sup>10</sup>Be ages from this project, is intended to constrain ice margin retreat rates and timing in the region. Ultimately, we will integrate our ice thickness over time constraints with the existing network of deglacial ages to create a probabilistic reconstructions of the southeastern Laurentide Ice Sheet volume during its recession through the northeastern United States.</p>


2007 ◽  
Vol 44 (2) ◽  
pp. 113-136 ◽  
Author(s):  
Victor K. Prest

ABSTRACTThis paper deals with the evolution of ideas concerning the configuration of flow patterns of the great inland ice sheets east of the Cordillera. The interpretations of overall extent of Laurentide ice have changed little in a century (except in the Arctic) but the manner of growth, centres of outflow, and ice-flow patterns, remain somewhat controversial. Present geological data however, clearly favour the notion of multiple centres of ice flow. The first map of the extent of the North American ice cover was published in 1881. A multi-domed concept of the ice sheet was illustrated in an 1894 sketch-map of radial flow from dispersal areas east and west of Hudson Bay. The first large format glacial map of North America was published in 1913. The binary concept of the ice sheet was in vogue until 1943 when a single centre in Hudson Bay was proposed, based on the westward growth of ice from Labrador/Québec. This Hudson dome concept persisted but was not illustrated until 1977. By this time it was evident from dispersal studies that the single dome concept was not viable. Dispersal studies clearly indicate long-continued westward ice flow from Québec into and across southern Hudson Bay, as well as eastward flow from Keewatin into the northern part of the bay. Computer-type modelling of the Laurentide ice sheet(s) further indicates their complex nature. The distribution of two indicator erratics from the Proterozoicage Belcher Island Fold Belt Group help constrain ice flow models. These erratics have been dispersed widely to the west, southwest and south by the Labrador Sector of more than one Laurentide ice sheet. They are abundant across the Paleozoic terrain of the Hudson-James Bay lowland, but decrease in abundance across the adjoining Archean upland. Similar erratics are common in northern Manitoba in the zone of confluence between Labrador and Keewatin Sector ice. Scattered occurences across the Prairies occur within the realm of south-flowing Keewatin ice. As these erratics are not known, and presumably not present, in Keewatin, they indicate redirection and deposition by Keewatin ice following one or more older advances of Labrador ice. The distribution of indicator erratics thus test our concepts of ice sheet growth.


2015 ◽  
Vol 52 (11) ◽  
pp. 966-979 ◽  
Author(s):  
Karin Ebert

The erosional impacts of former ice sheets on the low-relief bedrock surfaces of Northern Hemisphere shields are not well understood. This paper assesses the variable impacts of glacial erosion on a portion of Baffin Island, eastern Canadian Arctic, between 68° and 72°N and 66° and 80°W. This tilted shield block was covered repeatedly by the Laurentide Ice Sheet during the late Cenozoic. The impact of ice-sheet erosion is examined with GIS analyses using two geomorphic parameters: lake density and terrain ruggedness. The resulting patterns generally conform to published data from other remote sensing studies, geological observations, cosmogenic exposure ages, and the distribution of the chemical index of alteration for tills. Lake density and terrain ruggedness are thereby demonstrated to be useful quantitative indicators of variable ice-sheet erosional impacts across Baffin Island. Ice-sheet erosion was most effective in the lower western parts of the lowlands, in a west–east-oriented band at around 350–400 m a.s.l., and in fjord-onset zones in the uplifted eastern region. Above the 350–400 m a.s.l. band and between the fjord-onset zones, ice-sheet erosion was not sufficient to create extensive ice-roughened or streamlined bedrock surfaces. The exception — where lake density and terrain ruggedness indicate that ice-sheet erosion had a scouring effect all across the study area — was in an area from Foxe Basin to Home Bay with elevations <400 m a.s.l. These morphological contrasts link to former ice-sheet basal thermal regimes during the Pleistocene. The zone of low glacial erosion surrounding the cold-based Barnes Ice Cap probably represents the ice cap’s greater extent during successive Pleistocene cold stages. Inter-fjord plateaus with few ice-sheet bedforms remained cold-based throughout multiple Pleistocene glaciations. In contrast, zones of high lake density and high terrain ruggedness are a result of the repeated development of fast-flowing, erosive ice in warm-based zones beneath the Laurentide Ice Sheet. These zones are linked to greater ice thickness over western lowland Baffin Island. However, adjacent lowland surfaces with similar elevations of non-eroded, weakly eroded, and ice-scoured shield bedrock indicate that—even in areas of high lake density and terrain ruggedness—the total depth of ice sheet erosion did not exceed 50 m.


2017 ◽  
Vol 87 (3) ◽  
pp. 468-481 ◽  
Author(s):  
Jordan B. R. Eamer ◽  
Dan H. Shugar ◽  
Ian J. Walker ◽  
Olav B. Lian ◽  
Christina M. Neudorf ◽  
...  

AbstractDescriptions of the Cordilleran Ice Sheet retreat after the last glacial maximum have included short-lived readvances occurring during the Older and Younger Dryas stadial periods and into the Holocene, but identification of these events has been largely limited to southwest and central British Columbia and northwest Washington State. We present evidence of a late Pleistocene readvance of Cordilleran ice occurring on the central coast of British Columbia on Calvert Island, between northern Vancouver Island and Haida Gwaii. Evidence is provided by sedimentological and paleoecological information contained in a sedimentary sequence combined with geomorphic mapping of glacial features in the region. Results indicate that a cold climate existed between 15.1 and 14.3 cal ka BP and that ice advanced to, and then retreated from, the western edge of the island between 14.2 and 13.8 cal ka BP. These data provide the first evidence of a major fluctuation in the retreating ice sheet margin in this region and suggest that a cold climate was a major factor in ice readvance. These data contribute to the understanding of past temperature, ice loading and crustal response, the nature of ice margin retreat, and the paleoenvironment of an understudied area of the Pacific Northwest.


2020 ◽  
Author(s):  
Helen Dulfer ◽  
Martin Margold

&lt;p&gt;The Cordilleran Ice Sheet (CIS) repeatedly covered western Canada during the Pleistocene and attained a volume and area similar to that of the present-day Greenland Ice Sheet. Deglaciation of the CIS following the Last Glacial Maximum (LGM) directly affected atmosphere and ocean circulation, eustatic sea level, and human migration from Asia to North America. It has recently been shown that the rapid climate oscillations at the end of the Pleistocene had a dramatic effect on the CIS. Data on glacial isostatic adjustment and cosmogenic nuclide exposure ages indicate that abrupt warming at the onset of the B&amp;#248;lling-Aller&amp;#248;d caused significant thinning of the ice sheet, resulting in a fifty percent reduction in mass, while the Younger Dryas cooling caused the expansion of alpine glaciers across the mountains of western Canada. However, the mountainous subglacial terrain makes it challenging to reconstruct the regional-scale deglaciation dynamics of the ice sheet, and its configuration during this period of rapid change remains poorly constrained.&amp;#160;&lt;/p&gt;&lt;p&gt;Here we use the glacial landform record to reconstruct the ice sheet configuration for the central sector of the CIS, over the Cassiar and Omineca Mountains in northern British Columbia, during the Late Pleistocene climate reversals. We present the first regional-scale reconstruction of the CIS following the B&amp;#248;lling-Aller&amp;#248;d warming, whereby the ice sheet was reduced to a labyrinth of valley glaciers fed by ice dispersal centres located over the Skeena Mountains in the south and Coast Mountains in the west. Additionally, numerous lateral and terminal late glacial moraines delineate the extent of alpine glaciers, ice caps and ice fields that regrew on mountain peaks above the CIS during the Younger Dryas. Cross-cutting relationships indicate that the valley glaciers of the CIS were slower to respond to the Younger Dryas cooling than the mountain glaciers.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document