scholarly journals Supplemental Material: Contrasting northern and southern European winter climate trends during the Last Interglacial

2021 ◽  
Author(s):  
Sakari Salonen ◽  
et al.

Paleoclimate reconstructions, pollen–climate calibration data, and cross-validation results.

2021 ◽  
Author(s):  
Sakari Salonen ◽  
et al.

Paleoclimate reconstructions, pollen–climate calibration data, and cross-validation results.


Geology ◽  
2021 ◽  
Author(s):  
J. Sakari Salonen ◽  
Maria Fernanda Sánchez-Goñi ◽  
Hans Renssen ◽  
Anna Plikk

The Last Interglacial (LIG; 130–115 ka) is an important test bed for climate science as an instance of significantly warmer than preindustrial global temperatures. However, LIG climate patterns remain poorly resolved, especially for winter, affected by a suite of strong feedbacks such as changes in sea-ice cover in the high latitudes. We present a synthesis of winter temperature and precipitation proxy data from the Atlantic seaboard of Europe, spanning from southern Iberia to the Arctic. Our data reveal distinct, opposite latitudinal climate trends, including warming winters seen in the European Arctic while cooling and drying occurred in southwest Europe over the LIG. Climate model simulations for 130 and 120 ka suggest these contrasting climate patterns were affected by a shift toward an atmospheric circulation regime with an enhanced meridional pressure gradient and strengthened midlatitude westerlies, leading to a strong reduction in precipitation across southern Europe.


Author(s):  
Mohan Vijaya Anoop ◽  
Budda Thiagarajan Kannan

A strategy for calibration of X-wire probes and data inversion is described in this article. The approach used has elements of full velocity vs yaw-angle calibration with robust curve fitting. The responses of an X-wire probe placed in a calibration jet are recorded for a set of velocity and yaw inputs followed by fitting cross-validated splines. These spline functions trained from calibration data are evaluated for the probe responses during measurement. X-wire probes are calibrated for low to moderate velocities (0.65 m/s to 32 m/s) and yaw angles in the range −40° to 40° and comparisons with conventional interpolation schemes are made. The proposed algorithm can be extended to calibration of other multiple wire probes and for higher velocities. Some measurements in a single round turbulent jet flow at high Reynolds number using the proposed inversion algorithm are also presented. The present scheme is found to perform better particularly at low flow magnitudes and/or extreme flow angles than the schemes used previously.


Author(s):  
OCTAVIANUS BUDI SANTOSA ◽  
MICHAEL RAHARJA GANI ◽  
SRI HARTATI YULIANI

Objective: The objective of this study was to develop a UV spectroscopy method in combination with multivariate analysis for determining vitexin in binahong (Anredera cordifolia (Ten.) Steenis) leaves extract. Methods: The partial least square (PLS) regression and the principal component regression (PCR) was performed in this study to evaluate several statistical performances such as coefficient of determination (R2), root mean square error of calibration (RMSEC), root mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP) and relative error of prediction (REP). Cross-validation in this study was performed using leave one out technique. Results: The R2 values of calibration data sets resulted from PLS ​​and PCR method were 0.9675 and 0.9648, respectively. The low values of RMSEC and RMSECV both for PLS ​​and PCR method indicated the minimum error of the calibration models. The R2 values of validation data sets resulted from PLS ​​and PCR method were 0.9778 and 0.9820, respectively. The low values of RMSEP both for PLS ​​and PCR method indicated the minimum error of prediction generated from the calibration data sets. Multivariate calibration techniques were applied to determine the content of vitexin in binahong leaves extract. Predicted values from the multivariate calibration models were compared to the actual values determined from a validated HPLC method. It was found that PLS models resulted in the lowest REP values compared to the PCR models. Conclusion: The chemometrics technique can be applied as an alternative method for determining vitexin levels in the ethanol solution of binahong leaves extract.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5518 ◽  
Author(s):  
Tomislav Hengl ◽  
Madlene Nussbaum ◽  
Marvin N. Wright ◽  
Gerard B.M. Heuvelink ◽  
Benedikt Gräler

Random forest and similar Machine Learning techniques are already used to generate spatial predictions, but spatial location of points (geography) is often ignored in the modeling process. Spatial auto-correlation, especially if still existent in the cross-validation residuals, indicates that the predictions are maybe biased, and this is suboptimal. This paper presents a random forest for spatial predictions framework (RFsp) where buffer distances from observation points are used as explanatory variables, thus incorporating geographical proximity effects into the prediction process. The RFsp framework is illustrated with examples that use textbook datasets and apply spatial and spatio-temporal prediction to numeric, binary, categorical, multivariate and spatiotemporal variables. Performance of the RFsp framework is compared with the state-of-the-art kriging techniques using fivefold cross-validation with refitting. The results show that RFsp can obtain equally accurate and unbiased predictions as different versions of kriging. Advantages of using RFsp over kriging are that it needs no rigid statistical assumptions about the distribution and stationarity of the target variable, it is more flexible towards incorporating, combining and extending covariates of different types, and it possibly yields more informative maps characterizing the prediction error. RFsp appears to be especially attractive for building multivariate spatial prediction models that can be used as “knowledge engines” in various geoscience fields. Some disadvantages of RFsp are the exponentially growing computational intensity with increase of calibration data and covariates and the high sensitivity of predictions to input data quality. The key to the success of the RFsp framework might be the training data quality—especially quality of spatial sampling (to minimize extrapolation problems and any type of bias in data), and quality of model validation (to ensure that accuracy is not effected by overfitting). For many data sets, especially those with lower number of points and covariates and close-to-linear relationships, model-based geostatistics can still lead to more accurate predictions than RFsp.


2002 ◽  
Vol 10 (1) ◽  
pp. 15-25 ◽  
Author(s):  
L.K. Sørensen

A more precise estimate of the accuracy of near infrared (NIR) spectroscopy is obtained when the measured standard errors of cross validation ( SECV) and prediction ( SEP) are corrected for imprecision of the reference data. The significance of correction increases with increasing imprecision of reference data. Very high precision of reference data obtained through replicate analyses under reproducibility conditions may not be the optimal goal for the development of calibration equations. In a situation of limited resources, the precision of the reference data should be related to the obtainable accuracy of the spectroscopic system. Investigation of several routine applications based on the partial least-squares (PLS) regression technique showed that increased precision of calibration data only resulted in marginal improvements in true accuracy if the total standard error of reference results from the beginning was less than the estimated true accuracy of the corresponding NIR calibration.


2017 ◽  
Vol 8 (2) ◽  
pp. 792-795 ◽  
Author(s):  
G. Portz ◽  
M. L. Gnyp ◽  
J. Jasper

This study aims to evaluate actual biomass and N-uptake estimates with the Yara N-Sensor in intensively managed grass swards across several trial sites in Europe. The dataset was split by location into an independent calibration data (UK and Finland) and a validation data (Germany) for the first two cuts. Yara N-Sensor readings were better correlated with N-uptake (R2=0.71) than actual biomass (R2=0.53) for the 1st cut. At the 2nd cut, the R2 values for both parameters were higher (0.80 and 0.56). A cross-validation with a German grass trial indicated the potential for predicting N-uptake (R2>0.8). It can be concluded that the technology has the potential to guide management decisions and variable rate nitrogen application on European grass swards.


2012 ◽  
Vol 8 (5) ◽  
pp. 1637-1648 ◽  
Author(s):  
M. Mudelsee ◽  
J. Fohlmeister ◽  
D. Scholz

Abstract. A fundamental problem in paleoclimatology is to take fully into account the various error sources when examining proxy records with quantitative methods of statistical time series analysis. Records from dated climate archives such as speleothems add extra uncertainty from the age determination to the other sources that consist in measurement and proxy errors. This paper examines three stalagmite time series of oxygen isotopic composition (δ18O) from two caves in western Germany, the series AH-1 from the Atta Cave and the series Bu1 and Bu4 from the Bunker Cave. These records carry regional information about past changes in winter precipitation and temperature. U/Th and radiocarbon dating reveals that they cover the later part of the Holocene, the past 8.6 thousand years (ka). We analyse centennial- to millennial-scale climate trends by means of nonparametric Gasser–Müller kernel regression. Error bands around fitted trend curves are determined by combining (1) block bootstrap resampling to preserve noise properties (shape, autocorrelation) of the δ18O residuals and (2) timescale simulations (models StalAge and iscam). The timescale error influences on centennial- to millennial-scale trend estimation are not excessively large. We find a "mid-Holocene climate double-swing", from warm to cold to warm winter conditions (6.5 ka to 6.0 ka to 5.1 ka), with warm–cold amplitudes of around 0.5‰ δ18O; this finding is documented by all three records with high confidence. We also quantify the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the current warmth. Our analyses cannot unequivocally support the conclusion that current regional winter climate is warmer than that during the MWP.


2012 ◽  
Vol 8 (3) ◽  
pp. 1973-2005 ◽  
Author(s):  
M. Mudelsee ◽  
J. Fohlmeister ◽  
D. Scholz

Abstract. A fundamental problem in paleoclimatology is to take fully into account the various error sources when examining proxy records with quantitative methods of statistical time series analysis. Records from dated climate archives such as speleothems add extra uncertainty from the age determination to the other sources that consist in measurement and proxy errors. This paper examines three stalagmite time series of oxygen isotopic composition (δ18O) from two caves in Western Germany, the series AH-1 from the Atta cave and the series Bu1 and Bu4 from the Bunker cave. These records carry regional information about past changes in winter precipitation and temperature. U/Th and radiocarbon dating reveals that they cover the later part of the Holocene, the past 8.6 thousand years (ka). We analyse centennial- to millennial-scale climate trends by means of nonparametric Gasser-Müller kernel regression. Error bands around fitted trend curves are determined by combining (1) block bootstrap resampling to preserve noise properties (shape, autocorrelation) of the δ18O residuals and (2) timescale simulations (models StalAge and iscam). The timescale error influences on centennial- to millennial-scale trend estimation are not excessively large. We find a "mid-Holocene climate double-swing", from warm to cold to warm winter conditions (6.5 ka to 6.0 ka to 5.1 ka), with warm–cold amplitudes of around 0.5‰ δ18O; this finding is documented by all three records with high confidence. We also quantify the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the current warmth. Our analyses cannot unequivocally support the conclusion that current regional winter climate is warmer than that during the MWP.


2021 ◽  
Author(s):  
Andrea Morger ◽  
Fredrik Svensson ◽  
Staffan Arvidsson McShane ◽  
Niharika Gauraha ◽  
Ulf Norinder ◽  
...  

Abstract Machine learning methods are widely used in drug discovery and toxicity prediction. While showing overall good performance in cross-validation studies, their predictive power (often) drops in cases where the query samples have drifted from the training data’s descriptor space. Thus, the assumption for applying machine learning algorithms, that training and test data stem from the same distribution, might not always be fulfilled. In this work, conformal prediction is used to assess the calibration of the models. Deviations from the expected error may indicate that training and test data originate from different distributions. Exemplified on the Tox21 datasets, composed of chronologically released Tox21Train, Tox21Test and Tox21Score subsets, we observed that while internally valid models could be trained using cross-validation on Tox21Train, predictions on the external Tox21Score data resulted in higher error rates than expected. To improve the prediction on the external sets, a strategy exchanging the calibration set with more recent data, such as Tox21Test, has successfully been introduced. We conclude that conformal prediction can be used to diagnose data drifts and other issues relating to model calibration. The proposed improvement strategy — exchanging the calibration data only — is convenient as it does not require retraining of the underlying model.


Sign in / Sign up

Export Citation Format

Share Document