Some Features of the Intra-Annual Variability of Heat Fluxes in the North Atlantic

2021 ◽  
Vol 57 (6) ◽  
pp. 619-631
Author(s):  
K. P. Belyaev ◽  
V. Yu. Korolev ◽  
A. K. Gorshenin ◽  
A. I. Antipov ◽  
M. A. Imeev ◽  
...  
2012 ◽  
Vol 69 (5) ◽  
pp. 802-808 ◽  
Author(s):  
Karin Margretha H. Larsen ◽  
Hjálmar Hátún ◽  
Bogi Hansen ◽  
Regin Kristiansen

Abstract Larsen, K. M. H., Hátún, H., Hansen, B., and Kristiansen, R. 2012. Atlantic water in the Faroe area: sources and variability. – ICES Journal of Marine Science, 69: 802–808. The inflow of Atlantic water (AW) across the Greenland–Scotland Ridge and into the Nordic Seas controls both physical and biological conditions in the northeastern Atlantic through its transport of heat, salt, and other properties. The two main branches of this flow pass through the Iceland–Faroe Gap and the Faroe–Shetland Channel, respectively. Regular monitoring along four standard sections crossing these flows provides time-series of the AW temperature and salinity variability since the late 1980s. The analysis of these series presented shows a persistent increasing trend in both temperature and salinity, modulated by smaller subdecadal oscillations. Using supplementary data sources, the previously established link between the large-scale circulation in the North Atlantic and Atlantic inflow properties is supported. Salinity is also impacted by large changes in the Bay of Biscay source waters, and upstream air–sea heat fluxes modulate temperature. Relationships between changes in transport and associated residence time, and the modifying strength of the air–sea interaction and mixing, are also discussed.


Ocean Science ◽  
2012 ◽  
Vol 8 (1) ◽  
pp. 91-102 ◽  
Author(s):  
I. Núñez-Riboni ◽  
M. Bersch ◽  
H. Haak ◽  
J. H. Jungclaus ◽  
K. Lohmann

Abstract. Observations since the 1950s show a multi-decadal cycle of a meridional displacement of the Subpolar Front (SPF) in the Newfoundland Basin (NFB) in the North Atlantic. The SPF displacement is associated with corresponding variations in the path of the North Atlantic Current. We use the ocean general circulation model MPIOM with enhanced horizontal and vertical resolutions and forced with NCEP/NCAR reanalysis data to study the relation of the SPF displacement to atmospheric forcing, intensities of the subpolar gyre (SPG) and Meridional Overturning Circulation (MOC), and Labrador Sea Water (LSW) volume. The simulations indicate that the SPF displacement is associated with a circulation anomaly between the SPG and the subtropical gyre (STG), an inter-gyre gyre with a multi-decadal time scale. A sensitivity experiment indicates that both wind stress curl (WSC) and heat fluxes (which match LSW changes) contribute to the circulation anomalies in the frontal region and to the SPF displacement. An anticyclonic inter-gyre gyre is related to negative WSC and LSW anomalies and to a SPF north of its climatological position, indicating an expanding STG. A cyclonic inter-gyre gyre is related to positive WSC and LSW anomalies and a SPF south of its climatological position, indicating an expanding SPG. Therefore, the mean latitudinal position of the SPF in the NFB (a "SPF index") could be an indicator of the amount of LSW in the inter-gyre region. Spreading of LSW anomalies intensifies the MOC, suggesting our SPF index as predictor of the MOC intensity at multi-decadal time scales. The meridional displacement of the SPF has a pronounced influence on the meridional heat transport, both on its gyre and overturning components.


2021 ◽  
Author(s):  
Louis Clement ◽  
Elaine McDonagh ◽  
Jonathan Gregory ◽  
Quran Wu ◽  
Alice Marzocchi ◽  
...  

<p><span>Anthropogenic warming added to the climate system accumulates mostly in the ocean interior and discrepancies in how this is modelled contribute to uncertainties in predicting sea level rise. Temperature changes are partitioned between excess, due to perturbed surface heat fluxes, and redistribution, that arises from the changing circulation and perturbations to mixing. In a model (HadCM3) with realistic historical forcing (anthropogenic and natural) from 1960 to 2011, we firstly compare this excess-redistribution partitioning with the spice and heave decomposition, in which ocean interior temperature anomalies occur along or across isopycnals, respectively. This comparison reveals that in subtropical gyres (except in the North Atlantic) heave mostly captures excess warming in the top 2000 m, as expected from Ekman pumping, whereas spice captures redistributive cooling. At high-latitudes and in the subtropical Atlantic, however, spice predicts excess warming at the winter mixed layer whereas below this layer, spice represents redistributive warming in southern high latitudes.</span></p><p><span> </span></p><p><span>Secondly, we use Eulerian heat budgets of the ocean interior to identify the process responsible for excess and redistributive warming. In southern high latitudes, spice warming results from reduced convective cooling and increased warming by isopycnal diffusion, which account for the deep redistributive and shallow excess warming, respectively. In the North Atlantic, excess warming due to advection contains both cross-isopycnal warming (heave found in subtropical gyres) and along-isopycnal warming (spice). Finally, projections of heat budgets —coupled with salinity budgets— into thermohaline and spiciness-density coordinates inform us about how water mass formation occurs with varying T-S slopes. Such formation happens preferentially along isopycnal surfaces at high-latitudes and along isospiciness surfaces at mid-latitudes, and along both coordinates in the subtropical Atlantic. Because spice and heave depend only on temperature and salinity, our study suggests a method to detect excess warming in observations.</span></p>


2007 ◽  
Vol 24 (5) ◽  
pp. 923-934 ◽  
Author(s):  
Brian S. Chinn ◽  
Sarah T. Gille

Abstract Acoustically tracked float data from 16 experiments carried out in the North Atlantic are used to evaluate the feasibility of estimating eddy heat fluxes from floats. Daily float observations were bin averaged in 2° by 2° by 200-db-deep geographic bins, and eddy heat fluxes were estimated for each bin. Results suggest that eddy heat fluxes can be highly variable, with substantial outliers that mean that fluxes do not converge quickly. If 100 statistically independent observations are available in each bin (corresponding to 500–1000 float days of data), then results predict that 80% of bins will have eddy heat fluxes that are statistically different from zero. Pop-up floats, such as Autonomous Lagrangian Circulation Explorer (ALACE) and Argo floats, do not provide daily sampling and therefore underestimate eddy heat flux. The fraction of eddy heat flux resolved using pop-up float sampling patterns decreases linearly with increasing intervals between float mapping and can be modeled analytically. This implies that flux estimates from pop-up floats may be correctable to represent true eddy heat flux.


2020 ◽  
Author(s):  
Diana Iakovleva ◽  
Igor Bashmachnikov

<p>Interannual variations in the upper ocean heat and freshwater contents in the subpolar North Atlantic has important climatic effect. It affects the intensity of deep convection, which, in turn, forms the link between upper and deep ocean circulation of the global ocean Conveyor Belt.</p><p>The upper ocean heat content is primarily affected by two main process: by the ocean-atmosphere heat exchange and by oceanic heat advection. The intensity of both fluxes in the subpolar gyre is linked to the character of atmospheric circulation, largely determined by the phase of the North Atlantic Oscillation (NAO).</p><p>To study the interannual variability of the oceanic heat advection (in the upper 500<sup>th</sup> meters layer) we compare the results from four different data-sets: ARMOR-3D (1993-2018), SODA3.4.2 and SODA3.12.2 (1980-2017), and ORAS5 (1958-2017). The ocean-atmosphere heat exchange is accessed as the sum of the latent and the sensible heat fluxes, obtained from OAFlux data-set (1958-2016).</p><p>The oceanic heat advection to the Labrador and to the Irminger seas has high negative correlation (-0.79) with that into the Nordic Seas. During the years with high winter NAO Index (NAOI) the oceanic heat advection into the Subpolar Gyre decreases, while to the Nordic Seas – increases. These variations go in parallel with the intensification of the Norwegian, the West Spitsbergen and the slope East Greenland currents and weakening of the West Greenland and the Irminger Currents. During the years with high NAOI, the ocean heat release (both sensible and latent) over the Labrador and Irminger seas increases, but over the Norwegian Sea it decreases.</p><p>In summary, the results show that, during the positive NAO phase, the observed decrease of the heat content in the upper Labrador and Irminger seas is linked to both, a higher oceanic het release and a lower intensity of advection of warm water from the south. In the Norwegian Sea, the opposite sign of variations of the fluxes above leads to a simultaneous warming of the upper ocean.</p><p>The investigation is supported by the Russian Scientific Foundation (RSF), number of project 17-17-01151.</p><p> </p><p> </p>


2010 ◽  
Vol 23 (10) ◽  
pp. 2651-2670 ◽  
Author(s):  
Jeffrey Shaman ◽  
R. M. Samelson ◽  
Eric Skyllingstad

Abstract The intraseasonal variability of turbulent surface heat fluxes over the Gulf Stream extension and subtropical mode water regions of the North Atlantic, and long-term trends in these fluxes, are explored using NCEP–NCAR reanalysis. Wintertime sensible and latent heat fluxes from these surface waters are characterized by episodic high flux events due to cold air outbreaks from North America. Up to 60% of the November–March (NDJFM) total sensible heat flux and 45% of latent heat flux occurs on these high flux days. On average 41% (34%) of the total NDJFM sensible (latent) heat flux takes place during just 17% (20%) of the days. Over the last 60 years, seasonal NDJFM sensible and latent heat fluxes over the Climate Variability and Predictability (CLIVAR) Mode Water Dynamic Experiment (CLIMODE) region have increased owing to an increased number of high flux event days. The increased storm frequency has altered average wintertime temperature conditions in the region, producing colder surface air conditions over the North American eastern seaboard and Labrador Sea and warmer temperatures over the Sargasso Sea. These temperature changes have increased low-level vertical wind shear and baroclinicity along the North Atlantic storm track over the last 60 years and may further favor the trend of increasing storm frequency over the Gulf Stream extension and adjacent region.


Sign in / Sign up

Export Citation Format

Share Document