Synthesis of the Control System for a Second Order Non-Linear Object with an Incomplete Description

2018 ◽  
Vol 79 (9) ◽  
pp. 1558-1568 ◽  
Author(s):  
S. I. Kolesnikova
2018 ◽  
Vol 241 ◽  
pp. 01022 ◽  
Author(s):  
Piotr Wolszczak ◽  
Waldemar Samociuk

The article presents the results of choosing how to control a real non-linear object. Yeast drying requires a precise temperature control due to the possibility of overheating. The object changes properties during of the process flow. Object identification is used and a mathematical model is developed. The model is used to select roboust control methods. The results are compared to the system of two PID regulators used in practice.


2017 ◽  
Vol 6 (55) ◽  
pp. 114 ◽  
Author(s):  
Svetlana Ivanovna Kolesnikova

2015 ◽  
Vol 19 (95) ◽  
pp. 286-290
Author(s):  
Olga B. Babiychuk ◽  
◽  
Sergej A. Bobrikov ◽  
Anastasija A. Lopatinskaya ◽  
Evgenij D. Pichugin ◽  
...  
Keyword(s):  
Time Lag ◽  

2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


2003 ◽  
Vol 3 ◽  
pp. 297-307
Author(s):  
V.V. Denisov

An approach to the study of the stability of non-linear multiply connected systems of automatic control by means of a fast Fourier transform and the resonance phenomenon is considered.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 285
Author(s):  
Saad Althobati ◽  
Jehad Alzabut ◽  
Omar Bazighifan

The oscillation of non-linear neutral equations contributes to many applications, such as torsional oscillations, which have been observed during earthquakes. These oscillations are generally caused by the asymmetry of the structures. The objective of this work is to establish new oscillation criteria for a class of nonlinear even-order differential equations with damping. We employ different approach based on using Riccati technique to reduce the main equation into a second order equation and then comparing with a second order equation whose oscillatory behavior is known. The new conditions complement several results in the literature. Furthermore, examining the validity of the proposed criteria has been demonstrated via particular examples.


Sign in / Sign up

Export Citation Format

Share Document