Changes in the erythrocyte membrane-cytoskeleton complex induced by dimethyl sulfoxide, polyethylene glycol, and low temperature

BIOPHYSICS ◽  
2009 ◽  
Vol 54 (4) ◽  
pp. 490-496 ◽  
Author(s):  
N. G. Zemlyanskikh ◽  
O. N. Denisova
Blood ◽  
1983 ◽  
Vol 61 (2) ◽  
pp. 373-377 ◽  
Author(s):  
JE Smith ◽  
K Moore ◽  
M Arens ◽  
GA Rinderknecht ◽  
A Ledet

Abstract A dog with persistent elliptocytosis was studied. The dog had membrane protein band 4.1 deficiency, microcytosis, shortened erythrocyte lifespan, increased osmotic sensitivity, and a mild glutathione deficiency. Erythrocyte deformability and membrane stability were adversely effected. The dog's parents had decreased band 4.1, decreased stability, and some elliptocytosis. This disorder in dogs closely resembles human patients with band 4.1 deficiency and should provide a valuable animal model to study the erythrocyte membrane cytoskeleton.


2020 ◽  
pp. 50384
Author(s):  
Allif Rosyidy Hilmi ◽  
Nibras Fuadi Muwwaqor ◽  
Nur Aini Fauziyah ◽  
Suminar Pratapa

2021 ◽  
Vol 67 (2) ◽  
pp. 44-52
Author(s):  
N.G. Zemlianskykh ◽  
◽  
L.O. Babiychuk ◽  

Protein modifications in the membrane-cytoskeleton complex (MCC) of human erythrocytes, as well as changes in the intensity of reactive oxygen species (ROS) production upon cell cryopreservation with polyethylene glycol (PEG) were investigated. The protein profile of ghosts of erythrocytes frozen with PEG has common features with both the control and cells frozen without cryoprotectant. PEG makes it possible to restrict the structural rearrangements of the main MCC proteins under the effect of extreme factors and to restrain the amount of high molecular weight polypeptide complexes induced by the protein-cross-linking reagent diamide at the control level, in contrast to cells frozen without a cryoprotectant. However, changes related to the protein peroxiredoxin 2 in ghosts of erythrocytes cryopreserved with PEG are also attributed to cells frozen without a cryoprotectant that may be associated with the activation of oxidative processes. This is evidenced by a 10-fold increase in ROS formation in erythrocytes frozen under PEG protection. Thus, upon cryopreservation of erythrocytes with PEG, certain disorders in MCC proteins may be associated with increased formation of ROS, which may contribute to the disorganization of the structural components of MCC and disrupt the stability of cryopreserved cells under physiological conditions.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2235
Author(s):  
Hsien-Tsung Wu ◽  
Hong-Ming Tsai ◽  
Tsung-Hsuan Li

Polyethylene glycol (PEG) particles were prepared using low-temperature supercritical assisted atomization (LTSAA) with carbon dioxide as the spraying medium or the co-solute and acetone as the solvent. The effects of several key factors on the particle size were investigated. These factors included the concentration of the PEG solution, precipitator temperature, saturator temperature, ratio of the volumetric flow rate of carbon dioxide to the PEG solution, and the molecular weight of PEG. Spherical and non-aggregated PEG particles, with a mean size of 1.7–3.2 µm, were obtained in this study. The optimal conditions to produce fine particles were found to be a low concentration of the PEG solution, a low precipitator temperature, and low molecular weight of the PEG. The phase behavior of the solution mixture in the saturator presented a qualitative relationship. At the optimized volumetric flow rate ratios, the composition of CO2 in the feed streams was near the bubble points of the saturator temperatures. X-ray and differential scanning calorimetry analyses indicated that LTSAA-treated PEG had a reduced degree of crystallinity, which could be modulated via the precipitator temperature. PEG microparticles prepared by a LTSAA process would be promising carriers for drug-controlled formulations of PEG-drug composite particles.


1989 ◽  
Vol 44 (8) ◽  
pp. 955-958 ◽  
Author(s):  
George Dreyfus ◽  
Leopoldo de Meis

Mitochondrial F1 ATPase is inactivated by urea. Protection against urea inactivation is obtained when betaine, a methylamine found in different tissues, is added to the assay medium. Protection is also obtained upon the addition of either glycerol or dimethyl sulfoxide to the assay medium. The F, ATPase is rapidly inactivated at 4 °C. Inactivation by low temperature is prevented by betaine, glycerol and dimethyl sulfoxide. The protective effect of organic solvents and betaine against cold inactivation is prevented by urea.


ACS Nano ◽  
2014 ◽  
Vol 8 (10) ◽  
pp. 10414-10425 ◽  
Author(s):  
Ji-Gang Piao ◽  
Limin Wang ◽  
Feng Gao ◽  
Ye-Zi You ◽  
Yujie Xiong ◽  
...  

2000 ◽  
Vol 30 (4) ◽  
pp. 197-202 ◽  
Author(s):  
L. Di Marino ◽  
A. Maffettone ◽  
P. Cipriano ◽  
E. Celentano ◽  
R. Galasso ◽  
...  

Cryobiology ◽  
1970 ◽  
Vol 7 (2-3) ◽  
pp. 136-140 ◽  
Author(s):  
C.Dean Buckner ◽  
Rainer Storb ◽  
Lloyd A. Dillingham ◽  
E.Donnall Thomas

Sign in / Sign up

Export Citation Format

Share Document