Investigation of Mechanical Properties and Mode I Cohesive Failure of the Adhesive Layer in Sandwich Beams with a Cellular Core

2020 ◽  
Vol 61 (1) ◽  
pp. 124-130
Author(s):  
M. Shishesaz ◽  
M. Dehghani ◽  
M. Hasanvand
2018 ◽  
Vol 52 (21) ◽  
pp. 2961-2972 ◽  
Author(s):  
Mohammad Mohammadalipour ◽  
Mahmood Masoomi ◽  
Mojtaba Ahmadi ◽  
Zahra Kazemi

Nonpolar structure of ultra-high molecular weight polyethylene fiber leads to a weak interfacial adhesion in ultra-high molecular weight polyethylene fiber reinforced epoxy composite. Herein, synchronized fiber and matrix modifications were utilized so as to improve the interfacial adhesion, resulting in promoting mechanical properties of these composites. For this purpose, the surface of ultra-high molecular weight polyethylene fiber was chemically treated with glycidyl methacrylate and the epoxy resin was modified through incorporation of different contents of nanoclay. The mechanical properties results showed that individual modification, either fiber or matrix, can just lead to improvements around 36.74% and 10.54% in tensile strength as well as 14.28% and 4.27% in tensile modulus, respectively. However, the ultimate outcome of the study revealed that much higher improvement can be achieved in synergistic attitude. The highest enhancement around 48.31% and 26.76% in tensile strength and modulus were seen for the sample containing glycidyl methacrylate-treated ultra-high molecular weight polyethylene fibers as reinforcement and nano epoxy modified with 1 wt.% of nanoclay. Such observation could be attributed to the mechanical interlocking and chemical reaction which were arising from incorporation of nanoclay in matrix and chemical treatment of fiber surface, correspondingly. In this regard, fiber roughness and chemical bonds formed between treated fiber and modified matrix play a key role in improving interfacial adhesion. Moreover, the fractured surface of such composites studied by scanning electron microscope confirmed the mechanical results and showed that much more matrix was adhered to the fiber surface after treatment, indicating cohesive failure.


2020 ◽  
Vol 54 (25) ◽  
pp. 3883-3893
Author(s):  
Binhua Wang ◽  
Guangzhi Ding ◽  
Gang Wang ◽  
Sisi Kang

The brittle adhesive layer in carbon fiber-reinforced polymer (CFRP) laminates was strengthened by using short aramid fibers in this study. To ensure the feasibility and effectiveness of short aramid fiber interfacial toughening at the interface between the carbon-fiber face sheets, the self-prepared short aramid fibre tissue and the wettability treatment technology with resin pre-coating were applied to enable short aramid fibres to be well embedded in the uneven regions in the CFRP fabrics with fibres oriented at 0° and 90° to form a strong pulling resistance. The ultimate load and the mode I interlaminar fracture toughness have been improved by 75% and 103.9% from the double cantilever beam mode I crack propagation tests, respectively. The reinforcing mechanisms within the “composite adhesive layer” as a result of short aramid fibres are discussed together with detailed scanning electron microscopy observations and comparison test results.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1391 ◽  
Author(s):  
Viktor Kolář ◽  
Miroslav Müller ◽  
Rajesh Mishra ◽  
Anna Rudawska ◽  
Vladimír Šleger ◽  
...  

The paper is focused on the research of the cyclic loading of hybrid adhesive bonds based on eggshell microparticles in polymer composite. The aim of the research was to characterize the behavior of hybrid adhesive bonds with composite adhesive layer in quasi-static tests. An epoxy resin was used as the matrix and microparticles of eggshells were used as the filler. The adhesive bonds were exposed to cyclic loading and their service life and mechanical properties were evaluated. Testing was performed by 1000 cycles at 5–30% (165–989 N) and 5–70% (165–2307 N) of the maximum load of the filler-free bond in the static test. The results of the research show the importance of cyclic loading on the service life and mechanical properties of adhesive bonds. Quasi-static tests demonstrated significant differences between measured intervals of cyclic loading. All adhesive bonds resisted 1000 cycles of the quasi-static test with an interval loading 5–30%. The number of completed quasi-static tests with the interval loading 5–70% was significantly lower. The filler positively influenced the service life of adhesive bonds at a higher amount of quasi-static tests, i.e., the safety of adhesive bonds increased. The filler had a positive effect on adhesive bonds ABF2, where the strength significantly increased up to 20.26% at the loading of 5–30% against adhesive bonds ABF0. A viscoelasticity characteristic (creep) of the adhesive layer occurred at higher values of loading, i.e., between loading 5–70%. The viscoelasticity behavior did not occur at lower values of loading, i.e., between loading 5–30%.


2016 ◽  
Vol 836 ◽  
pp. 78-82 ◽  
Author(s):  
Sugiman ◽  
Ilham Akbar ◽  
Emmy Dyah Sulistyowati ◽  
Paryanto Dwi Setyawan

The paper presents the static strength of adhesively bonded steel joints aged in deionized water at a temperature of 60°C for 15 days at various adhesive thicknesses from 0.1 mm to 0.5 mm. Water uptake and the bulk adhesive tensile properties after aged in the same environment as the joints were also presented. It has been shown that water diffusion into the adhesive is non Fickian. The absorbed water in the adhesive significantly decreases the mechanical properties and it affects the static strength of the bonded steel joints. The effect of water is shown to be significant when the adhesive thickness is thicker than 0.2 mm as the static strength decreases sharply. This information is useful when designing the adhesive joints using thick adhesive layer exposed in moist environment.


Sign in / Sign up

Export Citation Format

Share Document