Development and validation spectroscopic methods for the determination of lomefloxacin in bulk and pharmaceutical formulations

2016 ◽  
Vol 120 (1) ◽  
pp. 153-163
Author(s):  
A. M. El-Didamony ◽  
S. M. Hafeez
Author(s):  
Kuntal Mukherjee ◽  
S. T. Narenderan ◽  
B. Babu ◽  
Survi Mishra ◽  
S. N. Meyyanathan

A simple, sensitive and rapid high performance liquid chromatographic method has been developed for the determination of Propofol. The main focus of the method was to determine Propofol in solution form as well as in marketed formulation. Chromatographic separation was achieved on Inertsil ODS-3V column (250mm x 4.6mm; 5µm) with a mobile phase consisting of methanol: water (85:15), with a flow rate of 1.0ml/min (UV detection at 270nm). Linearity was observed over the concentration range of 10-110µg/ml with a regression equation y=88048x + 44524 and having a regression value (R2) of 0.999. The LOD and LOQ values found to be 10ng and 100ng, respectively. No changes found in ruggedness and robustness studies. The percentage of recovery was found to be 95.25% to 101.81%. Validation studies revealed that the method was specific, accurate, precise, reliable, robust, reproducible and suitable for the quantitative analysis in its pharmaceutical formulations.


2017 ◽  
Vol 9 (5) ◽  
pp. 102
Author(s):  
Sukhjinder Kaur ◽  
Taranjit Kaur ◽  
Gurdeep Kaur ◽  
Shivani Verma

Objective: The aim of the present work was to develop a simple, rapid, accurate and economical UV-visible spectrophotometric method for the determination of hydroquinone (HQ) in its pure form, marketed formulation as well as in the prepared nanostructured lipid carrier (NLC) systems and to validate the developed method.Methods: HQ was estimated at UV maxima of 289.6 nm in pH 5.5 phosphate buffer using UV-Visible double beam spectrophotometer. Following the guidelines of the International Conference on Harmonization (ICH), the method was validated for various analytical parameters like linearity, precision, and accuracy robustness, ruggedness, limit of detection, quantification limit, and formulation analysis.Results: The obtained results of the analysis were validated statistically. Recovery studies were performed to confirm the accuracy of the proposed method. In the developed method, linearity over the concentration range of 5-40 μg/ml of HQ was observed with the correlation coefficient of 0.998 and found in good agreement with Beer Lambert’s law. The precision (intra-day and inter-day) of the method was found within official RCD limits (RSD<2%).Conclusion: The sensitivity of the method was assessed by determining the limit of detection and limit of quantification. It could be concluded from the results obtained that the purposed method for estimation of HQ in pure form, in the marketed ointment and in the prepared NLC-formulation was simple, rapid, accurate, precise and economical. It can be used successfully in the quality control of pharmaceutical formulations and for the routine laboratory analysis.


2016 ◽  
Vol 52 (4) ◽  
pp. 741-750 ◽  
Author(s):  
Marcos Vinícius de Moura Ribeiro ◽  
Ingrid da Silva Melo ◽  
Francisco das Chagas da Costa Lopes ◽  
Graziella Ciaramella Moita

Author(s):  
Jaspreet Kaur ◽  
Daljit Kaur ◽  
Sukhmeet Singh

Objective: A simple, accurate, and selective ultraviolet-spectrophotometric method has been developed for the estimation of febuxostat in the bulk and pharmaceutical dosage forms.Method: The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines. The developed method was validated statistically with respect to linearity, range, precision, accuracy, ruggedness, limit of detection (LOD), limit of quantitation (LOQ), and recovery. Specificity of the method was demonstrated by applying different stressed conditions to drug samples such as acid hydrolysis, alkaline hydrolysis, oxidative, photolytic, and thermal degradation.Results: The study was conducted using phosphate buffer pH 6.8 and λmax was found to be 312 nm. Standard plot having a concentration range of 1–10 μg/ml showed a good linear relationship with R2=0.999. The LOD and LOQ were found to be 0.118 μg/ml and 0.595 μg/ml, respectively. Recovery and percentage relative standard deviations were found to be 100.157±0.332% and <2%, respectively.Conclusion: Proposed method was successfully applicable to the pharmaceutical formulations containing febuxostat. Thus, the developed method is found to be simple, sensitive, accurate, precise, reproducible, and economical for the determination of febuxostat in pharmaceutical dosage forms.


Author(s):  
SMITA KUMBHAR ◽  
VINOD MATOLE ◽  
YOGESH THORAT ◽  
ANITA SHEGAONKAR ◽  
AVINASH HOSMANI

Objective: A new, simple, sensitive, precise and reproducible UV visible spectrophotometric method was developed for the determination of Imatinib in pharmaceutical formulations with alizarin. Methods: The method is based on formation of yellow-colored complex. The UV spectrum of Imatinib in methanol showed λ max at 431 nm. Beer’s law is valid in the concentration range of 10-70 μg/ml. This method was validated for linearity, accuracy, precision, ruggedness and robustness. Results: The method has demonstrated excellent linearity over the range of 10-70 μg/ml with regression equation y =0.013x-0.017 and regression correlation coefficient r2= 0.997. Moreover, the method was found to be highly sensitive with LOD (4.3μg/ml) and LOQ (13.07μg/ml). Conclusion: Based on results the proposed method can be successfully applied for the assay of Imatinib in various pharmaceutical dosage forms.


2011 ◽  
Vol 6 ◽  
pp. ACI.S8090 ◽  
Author(s):  
Lobna M. Abdellaziz ◽  
Mervat M. Hosny

Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe3+ ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2’ bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange—red ion- pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (Procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8-6, 0.8-4) for methods A and B, (16-96, 16-96 and 16-72) for procedures 1-3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical formulations without interference from the common excipients. The results obtained by the proposed methods were comparable with those obtained by the reference method.


Sign in / Sign up

Export Citation Format

Share Document