Sorption of cesium ions by nanostructured calcium aluminosilicates

2016 ◽  
Vol 90 (10) ◽  
pp. 2022-2028 ◽  
Author(s):  
P. S. Gordienko ◽  
I. A. Shabalin ◽  
S. B. Yarusova ◽  
A. P. Suponina ◽  
I. G. Zhevtun
2017 ◽  
Vol 265 ◽  
pp. 518-523
Author(s):  
P.S. Gordienko ◽  
S.B. Yarusova ◽  
I.A. Shabalin ◽  
V.A. Dostovalov

Long–lived 134Cs and 137Cs isotopes with half-cycle of 2.06 and 30 years respectively refer to the most dangerous and wide-spread radionuclides in ecological facilities. The efficient way of removing cesium radioisotopes from the living environment is to bind them into the compounds insoluble in water. This paper presents the findings on the sorption properties of synthetic nanostructured calcium aluminosilicates (CAS) with AI:Si correlation equal to 2:2, 2:6, 2:10 and obtained in CaCI2—AICI3—КОН--SiO2—H2O multiple-component system. An isotherm investigation of cesium ion sorption produced from aqueous solution with Cs+1 from 0.2 till 6.0 mmol/L-1 concentration was carried out. Maximum sorption capacity of calcium aluminosilicates (CAS) as well as Langmuir constant was defined. The kinetics data was received and the activation energy of cation exchange in the process of sorption was estimated. The impact of 1% КCI + 6% NaCI saline background on the values of interfacial distribution coefficient (Kd) and recovery rate of cesium ions were determined.


2013 ◽  
Vol 58 (1) ◽  
pp. 283-290 ◽  
Author(s):  
Y. Nishizaki ◽  
H. Miyamae ◽  
S. Ichikawa ◽  
K. Izumiya ◽  
T. Takano ◽  
...  

Our effort for decontamination of radioactive cesium scattered widely by nuclear accident in March 2011 in Fukushima, Japan has been described. Radioactive cesium scattered widely in Japan has been accumulating in arc or plasma molten-solidified ash in waste incinerating facilities up to 90,000 Bq/kg of the radioactive waste. Water rinsing of the ash resulted in dissolution of cesium ions together with high concentrations of potassium and sodium ions. Although potassium inhibits the adsorption of cesium on zeolite, we succeeded to precipitate cesium by in-situ formation of ferric ferrocyanide and iron rust in the radioactive filtrate after rinsing of the radioactive ash with water. Because the regulation of no preservation of any kind of cyanide substances, cesium was separated from the precipitate consisting of cesium-captured ferric ferrocyanide and ferric hydroxide in diluted NaOH solution and subsequent filtration gave rise to the potassium-free radioactive filtrate. Cesium was captured by zeolite from the potassium-free radioactive filtrate. The amount of this final radioactive waste of zeolite was significantly lower than that of the arc-molten-solidified ash.


2020 ◽  
Vol 108 (10) ◽  
pp. 799-808
Author(s):  
Mostafa M. Hamed ◽  
Mahmoud M. S. Ali ◽  
Aly A. Helal

AbstractRemoval of 137Cs radionuclides from the environment has engrossed the concern of researchers after Fukushima accident. The leakage of radioactive cesium ions can lead up to surface and groundwater contamination, and this leads to pollution of drinking water sources. In this work, corchorus olitorius stalks has been used as a novel precursor for production of low-cost mesoporous activated carbon (Meso-AC) and HNO3/H2O2-modified Meso-AC (m-Meso-AC). The physicochemical properties of all adsorbents were evaluated. The influences of sorption parameters and presence of some ligands (humic acid, fulvic acid, and EDTA) on the sorption of 137Cs were studied. The maximum 137Cs capacity of m-Meso-AC was found to be 58.74 mg/g. Efficiency of the new adsorbent to remove 137Cs radionuclides from natural waters (tap, river, and groundwater) was investigated. The studies showed that new adsorbent could be used as promising material for the retention of 137Cs from real radioactive waste and natural water samples.


1966 ◽  
Vol 37 (6) ◽  
pp. 710-712 ◽  
Author(s):  
G. Kuskevics ◽  
B. Thompson

2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Yi Ke ◽  
Ye Li ◽  
Lijun Zhu ◽  
Yuzhi Zhou ◽  
Dongbin Liu

Author(s):  
N. Kozhuhova ◽  
V. Strokova ◽  
R. Chizhov ◽  
M. Kozhuhova

Nowadays, the production of high-performance composites is a relevant objective in construction industry. Normally, geological and/or technological conditions of phase formation are responsible for chemical and structural characteristics of raw materials. In this regard, the use of a certain material dictates terms to optimizing production process, efficient use and, therefore, requires to develop a method for quality evaluation of raw materials. This approach allows a considerable time saving and raw materials sources, while the evaluation of final performance characteristics of designed materials is being done. The biggest interest in this area is focused on new types of developed and poorly-studied composite systems which results in a lack of capacity to design materials with known performance and, therefore, constrains the areas of application of construction composites Among such composite systems there are zero cement alkali-aluminosilicate systems or geopolymers. For geopolymers production a wide range of different aluminosilicates with varied characteristics potentially can be used. And also, in each certain case, the quality evaluation methods for aluminosilicates should be different. This study is focused on chemical reactivity assessment method of crystalline (mainly, nanocrystalline) low calcium aluminosilicates exposed to high-alkali media. The solubility degree in high-alkali media and compressive strength performance were evaluated in this study in order to define chemical reactivity of low calcium aluminosilicates. The compressive strength data demonstrated a positive correlation with the crystallinity degree of aluminosilicates.


2017 ◽  
Vol 41 (15) ◽  
pp. 7705-7713 ◽  
Author(s):  
H. Draouil ◽  
L. Alvarez ◽  
J. Causse ◽  
V. Flaud ◽  
M. A. Zaibi ◽  
...  

Single-walled carbon nanotubes (SWCNTs) are functionalized with copper hexacyanoferrate (CuHCF) nanoparticles to prepare solid substrates for sorption of cesium ions (Cs+) from liquid outflows.


1993 ◽  
Vol 9 (3) ◽  
pp. 295-306 ◽  
Author(s):  
Maria Teresa Santini ◽  
Silvia Paradisi ◽  
Elisabetta Straface ◽  
Walter Malorni

Sign in / Sign up

Export Citation Format

Share Document