Sorption Properties of Nanostructured Calcium Aluminosilicate with Respect to Cesium Ions

2017 ◽  
Vol 265 ◽  
pp. 518-523
Author(s):  
P.S. Gordienko ◽  
S.B. Yarusova ◽  
I.A. Shabalin ◽  
V.A. Dostovalov

Long–lived 134Cs and 137Cs isotopes with half-cycle of 2.06 and 30 years respectively refer to the most dangerous and wide-spread radionuclides in ecological facilities. The efficient way of removing cesium radioisotopes from the living environment is to bind them into the compounds insoluble in water. This paper presents the findings on the sorption properties of synthetic nanostructured calcium aluminosilicates (CAS) with AI:Si correlation equal to 2:2, 2:6, 2:10 and obtained in CaCI2—AICI3—КОН--SiO2—H2O multiple-component system. An isotherm investigation of cesium ion sorption produced from aqueous solution with Cs+1 from 0.2 till 6.0 mmol/L-1 concentration was carried out. Maximum sorption capacity of calcium aluminosilicates (CAS) as well as Langmuir constant was defined. The kinetics data was received and the activation energy of cation exchange in the process of sorption was estimated. The impact of 1% КCI + 6% NaCI saline background on the values of interfacial distribution coefficient (Kd) and recovery rate of cesium ions were determined.

Gels ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 12 ◽  
Author(s):  
Mohammed F. Hamza ◽  
Amal E. Mubark ◽  
Yuezou Wei ◽  
Thierry Vincent ◽  
Eric Guibal

The necessity to recover uranium from dilute solutions (for environmental/safety and resource management) is driving research towards developing new sorbents. This study focuses on the enhancement of U(VI) sorption properties of composite algal/Polyethylenimine beads through the quaternization of the support (by reaction with glycidyltrimethylammonium chloride). The sorbent is fully characterized by FTIR, XPS for confirming the contribution of protonated amine and quaternary ammonium groups on U(VI) binding (with possible contribution of hydroxyl and carboxyl groups, depending on the pH). The sorption properties are investigated in batch with reference to pH effect (optimum value: pH 4), uptake kinetics (equilibrium: 40 min) and sorption isotherms (maximum sorption capacity: 0.86 mmol U g−1). Metal desorption (with 0.5 M NaCl/0.5 M HCl) is highly efficient and the sorbent can be reused for five cycles with limited decrease in performance. The sorbent is successfully applied to the selective recovery of U(VI) from acidic leachate of uranium ore, after pre-treatment (cementation of copper, precipitation of rare earth elements with oxalate, and precipitation of iron). A pure yellow cake is obtained after precipitation of the eluate.


2012 ◽  
Vol 16 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Barbara Sapek

Abstract Sorption capacity and the energy of phosphorus adsorption on muck and peat deposits were studied in peat- -muck soil profile from a lowland peatland in the Kuwasy object. Soils of the area are characterised by a laminar structure which results in variable sorption properties of peat deposits of different origin, degree of humification (decomposition - R) and transformation of organic matter of upper muck layers (degree of mucking - Z). There was a relationship between the maximum phosphorus adsorption calculated from the Langmuir isotherm (b) and adsorption energy (k) and the type and degree of humification of peat and transformation of muck mass. Muck deposits of the maximum sorption capacity similar to that of peat deposits bind phosphorus less intensively than peats. One may expect that different sorption capacity and the strength of phosphorus binding will effect in different migration of inorganic and organic P compounds in soil profile and their transfer to ground waters.


2021 ◽  
Vol 324 ◽  
pp. 116-124
Author(s):  
Edgar Clyde R. Lopez ◽  
Nathaniel M. Saporsantos ◽  
William Ven R. Magbalon ◽  
Richard C. Aquino ◽  
Miguel Lawrence Keith S.J. Celebre ◽  
...  

In this study, the effectiveness of novel nanocomposite-coated filters consisting of biochar (BC) functionalized with sodium alginate (SA) and poly (vinyl alcohol) (PVA) was investigated for methylene (MB) blue removal. The filters were fabricated via a dip-coating method and SEM and FTIR spectroscopy confirmed the successful coating of the filters. The impact of the nanocomposite formulation and the operating parameters (initial pH and MB concentration) on the performance of the coated filters were studied. A nanocomposite composition consisting of 1.0 wt.% SA, 2.0 wt.% PVA, and 1000 ppm BC were found to be optimum, reaching as high as 96.51% MB removal. The fabricated filters were determined to be robust over a wide range of pH and initial MB concentrations. The Sips isotherm model proved to be the best-fit model for MB adsorption, where chemisorption dominates at low MB concentrations, while physisorption dominates at high MB concentrations. The filters have a maximum sorption capacity of 54.5198 mg g-1 and showed good reusability. Overall, our synthesized SA/PVA/BC-coated filters can be used to effectively remove dyes in wastewater over a wide range of operating conditions.


Author(s):  
Natalia A. Politaeva ◽  
Vladimir V. Slugin ◽  
Elena A. Taranovskaya ◽  
Ivan N. Alferov ◽  
Maksim A. Soloviev ◽  
...  

The article describes the main applications of biopolymer – chitosan, the most important of which are medicine and food industry. In recent times, many works devoted to the application of chitosan for wastewater treatment because it has a flocculation and sorption properties. The market price of chitosan is high, so it is proposed to create a granular composite sorption materials based on chitosan and waste of agricultural processing, which will reduce the cost and improve the sorption properties. As waste agricultural processing is proposed to use heat-treated threshing of millet which has high sorption properties. The composites, where the binder is chitosan and the filler - heat-treated threshing millet with different content (10 %; 20 %; 30 %; 40 % of the total weight) were obtained. The adsorption isotherms of zinc ions on the composite adsorbent materials with different content of filler were constructed and the values of maximum sorption capacity were calculated. The mechanical properties (abrasion and grindability) of the obtained composite sorption materials were determined and it was shown that the best sorption characteristics of composite material with the addition of the filler for 30%. The technological scheme of production of composite materials of the heat-treated millet threshing and chitosan for wastewater treatment was developed. The microstructural study of the obtained materials showed that heat-treated additive threshing of millet increases. The economic indicators of production of composite sorption materials were calculated and the methods of disposal were examined.Forcitation:Politaeva N.A., Slugin V.V., Taranovskaya E.A., Alferov I.N., Soloviev M.A., Zakharevich A.M. Granulated sorption materials for waste waters purufucation from zink ions (Zn2+). Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 7. P. 85-90.


2018 ◽  
Vol 106 (7) ◽  
pp. 581-591 ◽  
Author(s):  
Jie Li ◽  
Lin Zhu ◽  
Chengliang Xiao ◽  
Lanhua Chen ◽  
Zhifang Chai ◽  
...  

Abstract In this work, batch experiments were carried out to explore the sorption properties for perrhenate (ReO4−, a surrogate for TcO4−) by two types of commercial bifunctional anion-exchange resins (Purolite A530E and A532E). It is found that these two bifunctional anion-exchange resins could rapidly remove ReO4− from aqueous solution within 150 min and the maximum sorption capacity for ReO4− reached as high as 707 and 446 mg/g for Purolite A530E and A532E, respectively. The sorption properties were independent of pH over a wide range from 1 to 13. More importantly, both Purolite A530E and A532E exhibited excellent selectivity for the removal of ReO4− in the presence of large excess of NO3− and SO42−. Finally, the removal percentage of ReO4− by these two resins could be >90% and 80%, respectively, from the Hanford low-level waste melter off-gas scrubber simulant stream. Such high selectivity of Purolite A530E and A532E for the removal of ReO4− might be due to the presence of the long-chain group of –[N(Hexyl)3]+, which favored hydrophobic and large anions such as ReO4−/TcO4− rather than NO3−.


2020 ◽  
Vol 6 (1) ◽  
pp. 109
Author(s):  
Massoomeh Hedayati ◽  
Aldrin Abdullah ◽  
Mohammad Javad Maghsoodi Tilaki

There is continuous debate on the impact of house quality on residents’ health and well-being. Good living environment improves health, and fear of crime is recognised as a mediator in the relationship between physical environment and health. Since minimal studies have investigated the relationship, this study aims to examine the impact of the house quality on fear of crime and health. A total of 230 households from a residential neighbourhood in Malaysia participated in the study. Using structural equation modelling, the findings indicate that housing quality and fear of crime can account for a proportion of the variance in residents’ self-rated health. However, there is no significant relationship between housing quality and fear of crime. Results also show that fear of crime does not mediate the relationship between housing quality and health. This study suggests that the environment-fear relationship should be re-examined theoretically.  


Author(s):  
A. Safonov ◽  
N. Andriushchenko ◽  
N. Popova ◽  
K. Boldyrev

Проведен анализ сорбционных характеристик природных материалов (вермикулит, керамзит, перлит, цеолит Трейд ) при очистке кадмий- и хромсодержащих сточных вод с высокой нагрузкой по ХПК. Установлено, что цеолит обладает максимальными сорбционными характеристиками для Cd и Cr и наименьшим биологическим обрастанием. При использовании вермикулита и керамзита или смесей на их основе можно ожидать увеличения сорбционной емкости для Cd и Сr при микробном обрастании, неизбежно происходящем в условиях контакта с водами, загрязненными органическими соединениями и биогенами. При этом биообрастание может повысить иммобилизационную способность материалов для редоксзависимых металлов за счет ферментативных ресурсов бактериальных клеток, использующих их в качестве акцепторов электронов. Эффект микробного обрастания разнонаправленно изменял параметры материалов: для Cr в большинстве случаев уменьшение и для Cd значительное увеличение. При этом дополнительным эффектом иммобилизации Cr является его биологическое восстановление биопленками. Варьируя состав сорбционного материала, можно подбирать смеси, оптимально подходящие для очистки вод инфильтратов с полигонов твердых бытовых отходов с высокой нагрузкой по ХПК и биогенным элементам как при использовании in situ, так и в системах на поверхности.The analysis of the sorption characteristics of natural materials (vermiculite, expanded clay, perlite, Trade zeolite) during the purification of cadmium and chromium-containing leachate with a high COD load was carried out. It was determined that zeolite had the maximum sorption capacity for Cd and Cr and the lowest biological fouling. When using vermiculite and expanded clay or mixtures on their basis, one can expect an increase in the sorption capacity for Cd and Cr during microbial fouling that inevitably occurs during contacting with water polluted with organic compounds and nutrients. In this case biofouling can increase the immobilization properties of materials for redox-dependent metals due to the enzymatic resources of bacterial cells that use them as electron acceptors. The effect of microbial fouling changed the parameters of materials in different directions: for Cr, in most cases, downward, and for Cd, significantly upward. Moreover, chromium biological recovery by biofilms is an additional effect of immobilization. Varying the composition of the sorption material provides for selecting mixtures that are optimally suitable for the purification of leachates from solid waste landfills with high COD and nutrients load, both when used in situ and in surface systems.


2021 ◽  
Vol 13 (3) ◽  
pp. 1502
Author(s):  
Maria Xanthopoulou ◽  
Dimitrios Giliopoulos ◽  
Nikolaos Tzollas ◽  
Konstantinos S. Triantafyllidis ◽  
Margaritis Kostoglou ◽  
...  

In water and wastewater, phosphate anions are considered critical contaminants because they cause algae blooms and eutrophication. The present work aims at studying the removal of phosphate anions from aqueous solutions using silica particles functionalized with polyethylenimine. The parameters affecting the adsorption process such as pH, initial concentration, adsorbent dose, and the presence of competitive anions, such as carbonate, nitrate, sulfate and chromate ions, were studied. Equilibrium studies were carried out to determine their sorption capacity and the rate of phosphate ions uptake. The adsorption isotherm data fitted well with the Langmuir and Sips model. The maximum sorption capacity was 41.1 mg/g at pH 5, which decreased slightly at pH 7. The efficiency of phosphate removal adsorption increased at lower pH values and by increasing the adsorbent dose. The maximum phosphate removal was 80% for pH 5 and decreased to 75% for pH 6, to 73% for pH 7 and to 70% for pH 8, for initial phosphate concentration at about 1 mg/L and for a dose of adsorbent 100 mg/L. The removal rate was increased with the increase of the adsorbent dose. For example, for initial phosphate concentration of 4 mg/L the removal rate increased from 40% to 80% by increasing the dose from 0.1 to 2.0 g/L at pH 7. The competitive anions adversely affected phosphate removal. Though they were also found to be removed to a certain extent. Their co-removal provided an adsorbent which might be very useful for treating waters with low-level multiple contaminant occurrence in natural or engineered aquatic systems.


Author(s):  
Jumpei Mizuno ◽  
Daisuke Saito ◽  
Ken Sadohara ◽  
Misato Nihei ◽  
Shinichi Ohnaka ◽  
...  

Information support robots (ISRs) have the potential to assist older people living alone to have an independent life. However, the effects of ISRs on the daily activity, especially the sleep patterns, of older people have not been clarified; moreover, it is unclear whether the effects of ISRs depend on the levels of cognitive function. To investigate these effects, we introduced an ISR into the actual living environment and then quantified induced changes according to the levels of cognitive function. Older people who maintained their cognitive function demonstrated the following behavioral changes after using the ISR: faster wake-up times, reduced sleep duration, and increased amount of activity in the daytime (p < 0.05, r = 0.77; p < 0.05, r = 0.89, and p < 0.1, r = 0.70, respectively). The results suggest that the ISR is beneficial in supporting the independence of older people living alone since living alone is associated with disturbed sleep patterns and low physical activity. The impact of the ISR on daily activity was more remarkable in the subjects with high cognitive function than in those with low cognitive function. These findings suggest that cognitive function is useful information in the ISR adaptation process. The present study has more solid external validity than that of a controlled environment study since it was done in a personal residential space.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3541
Author(s):  
Ion Ion ◽  
Daniela Bogdan ◽  
Monica Maria Mincu ◽  
Alina Catrinel Ion

In this manuscript an improved sorbent based on modified exfoliated carbon nanoplatelets, applied in the removal of ammonium from aqueous samples, is presented. This sorbent showed better efficiency in comparison with the previous one obtained in our group for ammonium removal, the values of the maximum sorption capacity being improved from 10 to 12.04 mg/g. In terms of kinetics and sorption characteristic parameters, their values were also improved. Based on these results, a sorption mechanism was proposed, taking into account ion-exchange and chemisorption processes at the surface of the oxidized exfoliated carbon nanoplatelets. Future applications for simultaneous removal of other positive charged contaminants from natural waters might be possible.


Sign in / Sign up

Export Citation Format

Share Document