New Technologies for Decontamination of Radioactive Substances Scattered by Nuclear Accident / Nowe Technologie Dekontaminacji Radioaktywnych Substancji Rozproszonych Przez Awarie Nuklearna

2013 ◽  
Vol 58 (1) ◽  
pp. 283-290 ◽  
Author(s):  
Y. Nishizaki ◽  
H. Miyamae ◽  
S. Ichikawa ◽  
K. Izumiya ◽  
T. Takano ◽  
...  

Our effort for decontamination of radioactive cesium scattered widely by nuclear accident in March 2011 in Fukushima, Japan has been described. Radioactive cesium scattered widely in Japan has been accumulating in arc or plasma molten-solidified ash in waste incinerating facilities up to 90,000 Bq/kg of the radioactive waste. Water rinsing of the ash resulted in dissolution of cesium ions together with high concentrations of potassium and sodium ions. Although potassium inhibits the adsorption of cesium on zeolite, we succeeded to precipitate cesium by in-situ formation of ferric ferrocyanide and iron rust in the radioactive filtrate after rinsing of the radioactive ash with water. Because the regulation of no preservation of any kind of cyanide substances, cesium was separated from the precipitate consisting of cesium-captured ferric ferrocyanide and ferric hydroxide in diluted NaOH solution and subsequent filtration gave rise to the potassium-free radioactive filtrate. Cesium was captured by zeolite from the potassium-free radioactive filtrate. The amount of this final radioactive waste of zeolite was significantly lower than that of the arc-molten-solidified ash.

2012 ◽  
Vol 19 (3) ◽  
pp. 583-592 ◽  
Author(s):  
Yinke Dou ◽  
Xiaomin Chang

Abstract Ice thickness is one of the most critical physical indicators in the ice science and engineering. It is therefore very necessary to develop in-situ automatic observation technologies of ice thickness. This paper proposes the principle of three new technologies of in-situ automatic observations of sea ice thickness and provides the findings of laboratory applications. The results show that the in-situ observation accuracy of the monitor apparatus based on the Magnetostrictive Delay Line (MDL) principle can reach ±2 mm, which has solved the “bottleneck” problem of restricting the fine development of a sea ice thermodynamic model, and the resistance accuracy of monitor apparatus with temperature gradient can reach the centimeter level and research the ice and snow substance balance by automatically measuring the glacier surface ice and snow change. The measurement accuracy of the capacitive sensor for ice thickness can also reach ±4 mm and the capacitive sensor is of the potential for automatic monitoring the water level under the ice and the ice formation and development process in water. Such three new technologies can meet different needs of fixed-point ice thickness observation and realize the simultaneous measurement in order to accurately judge the ice thickness.


2013 ◽  
Vol 16 (1) ◽  
pp. 59-67

<p>The Soil Science Institute of Thessaloniki produces new digitized Soil Maps that provide a useful electronic database for the spatial representation of the soil variation within a region, based on in situ soil sampling, laboratory analyses, GIS techniques and plant nutrition mathematical models, coupled with the local land cadastre. The novelty of these studies is that local agronomists have immediate access to a wide range of soil information by clicking on a field parcel shown in this digital interface and, therefore, can suggest an appropriate treatment (e.g. liming, manure incorporation, desalination, application of proper type and quantity of fertilizer) depending on the field conditions and cultivated crops. A specific case study is presented in the current work with regards to the construction of the digitized Soil Map of the regional unit of Kastoria. The potential of this map can easily be realized by the fact that the mapping of the physicochemical properties of the soils in this region provided delineation zones for differential fertilization management. An experiment was also conducted using remote sensing techniques for the enhancement of the fertilization advisory software database, which is a component of the digitized map, and the optimization of nitrogen management in agricultural areas.</p>


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1757
Author(s):  
Yesica Vicente-Martínez ◽  
Manuel Caravaca ◽  
Antonio Soto-Meca ◽  
Miguel Ángel Martín-Pereira ◽  
María del Carmen García-Onsurbe

This paper presents a novel procedure for the treatment of contaminated water with high concentrations of nitrates, which are considered as one of the main causes of the eutrophication phenomena. For this purpose, magnetic nanoparticles functionalized with silver (Fe3O4@AgNPs) were synthesized and used as an adsorbent of nitrates. Experimental conditions, including the pH, adsorbent and adsorbate dose, temperature and contact time, were analyzed to obtain the highest adsorption efficiency for different concentration of nitrates in water. A maximum removal efficiency of 100% was reached for 2, 5, 10 and 50 mg/L of nitrate at pH = 5, room temperature, and 50, 100, 250 and 500 µL of Fe3O4@AgNPs, respectively. The characterization of the adsorbent, before and after adsorption, was performed by energy dispersive X-ray spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller analysis and Fourier-transform infrared spectroscopy. Nitrates can be desorbed, and the adsorbent can be reused using 500 µL of NaOH solution 0.01 M, remaining unchanged for the first three cycles, and exhibiting 90% adsorption efficiency after three regenerations. A deep study on equilibrium isotherms reveals a pH-dependent behavior, characterized by Langmuir and Freundlich models at pH = 5 and pH = 1, respectively. Thermodynamic studies were consistent with physicochemical adsorption for all experiments but showed a change from endothermic to exothermic behavior as the temperature increases. Interference studies of other ions commonly present in water were carried out, enabling this procedure as very selective for nitrate ions. In addition, the method was applied to real samples of seawater, showing its ability to eliminate the total nitrate content in eutrophized waters.


2020 ◽  
Vol 108 (10) ◽  
pp. 799-808
Author(s):  
Mostafa M. Hamed ◽  
Mahmoud M. S. Ali ◽  
Aly A. Helal

AbstractRemoval of 137Cs radionuclides from the environment has engrossed the concern of researchers after Fukushima accident. The leakage of radioactive cesium ions can lead up to surface and groundwater contamination, and this leads to pollution of drinking water sources. In this work, corchorus olitorius stalks has been used as a novel precursor for production of low-cost mesoporous activated carbon (Meso-AC) and HNO3/H2O2-modified Meso-AC (m-Meso-AC). The physicochemical properties of all adsorbents were evaluated. The influences of sorption parameters and presence of some ligands (humic acid, fulvic acid, and EDTA) on the sorption of 137Cs were studied. The maximum 137Cs capacity of m-Meso-AC was found to be 58.74 mg/g. Efficiency of the new adsorbent to remove 137Cs radionuclides from natural waters (tap, river, and groundwater) was investigated. The studies showed that new adsorbent could be used as promising material for the retention of 137Cs from real radioactive waste and natural water samples.


2021 ◽  
Vol 9 (3) ◽  
pp. 336
Author(s):  
Stephanie K. Moore ◽  
John B. Mickett ◽  
Gregory J. Doucette ◽  
Nicolaus G. Adams ◽  
Christina M. Mikulski ◽  
...  

Efforts to identify in situ the mechanisms underpinning the response of harmful algae to climate change demand frequent observations in dynamic and often difficult to access marine and freshwater environments. Increasingly, resource managers and researchers are looking to fill this data gap using unmanned systems. In this study we integrated the Environmental Sample Processor (ESP) into an autonomous platform to provide near real-time surveillance of harmful algae and the toxin domoic acid on the Washington State continental shelf over a three-year period (2016–2018). The ESP mooring design accommodated the necessary subsystems to sustain ESP operations, supporting deployment durations of up to 7.5 weeks. The combination of ESP observations and a suite of contextual measurements from the ESP mooring and a nearby surface buoy permitted an investigation into toxic Pseudo-nitzschia spp. bloom dynamics. Preliminary findings suggest a connection between bloom formation and nutrient availability that is modulated by wind-forced coastal-trapped waves. In addition, high concentrations of Pseudo-nitzschia spp. and elevated levels of domoic acid observed at the ESP mooring location were not necessarily associated with the advection of water from known bloom initiation sites. Such insights, made possible by this autonomous technology, enable the formulation of testable hypotheses on climate-driven changes in HAB dynamics that can be investigated during future deployments.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 330
Author(s):  
Hengli Xiang ◽  
Genkuan Ren ◽  
Yanjun Zhong ◽  
Dehua Xu ◽  
Zhiye Zhang ◽  
...  

Fe3O4@C nanoparticles were prepared by an in situ, solid-phase reaction, without any precursor, using FeSO4, FeS2, and PVP K30 as raw materials. The nanoparticles were utilized to decolorize high concentrations methylene blue (MB). The results indicated that the maximum adsorption capacity of the Fe3O4@C nanoparticles was 18.52 mg/g, and that the adsorption process was exothermic. Additionally, by employing H2O2 as the initiator of a Fenton-like reaction, the removal efficiency of 100 mg/L MB reached ~99% with Fe3O4@C nanoparticles, while that of MB was only ~34% using pure Fe3O4 nanoparticles. The mechanism of H2O2 activated on the Fe3O4@C nanoparticles and the possible degradation pathways of MB are discussed. The Fe3O4@C nanoparticles retained high catalytic activity after five usage cycles. This work describes a facile method for producing Fe3O4@C nanoparticles with excellent catalytic reactivity, and therefore, represents a promising approach for the industrial production of Fe3O4@C nanoparticles for the treatment of high concentrations of dyes in wastewater.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2158
Author(s):  
Yueqin Shi ◽  
Zhanyang Yu ◽  
Zhengjun Li ◽  
Xiaodong Zhao ◽  
Yongjun Yuan

Plastic photodegradation naturally takes 300–500 years, and their chemical degradation typically needs additional energy or causes secondary pollution. The main components of global plastic are polymers. Hence, new technologies are urgently required for the effective decomposition of the polymers in natural environments, which lays the foundation for this study on future plastic degradation. This study synthesizes the in-situ growth of TiO2 at graphene oxide (GO) matrix to form the TiO2@GO photocatalyst, and studies its application in conjugated polymers’ photodegradation. The photodegradation process could be probed by UV-vis absorption originating from the conjugated backbone of polymers. We have found that the complete decomposition of various polymers in a natural environment by employing the photocatalyst TiO2@GO within 12 days. It is obvious that the TiO2@GO shows a higher photocatalyst activity than the TiO2, due to the higher crystallinity morphology and smaller size of TiO2, and the faster transmission of photogenerated electrons from TiO2 to GO. The stronger fluorescence (FL) intensity of TiO2@GO compared to TiO2 at the terephthalic acid aqueous solution indicates that more hydroxyl radicals (•OH) are produced for TiO2@GO. This further confirms that the GO could effectively decrease the generation of recombination centers, enhance the separation efficiency of photoinduced electrons and holes, and increase the photocatalytic activity of TiO2@GO. This work establishes the underlying basic mechanism of polymers photodegradation, which might open new avenues for simultaneously addressing the white pollution crisis in a natural environment.


1991 ◽  
Vol 69 (11) ◽  
pp. 1705-1712 ◽  
Author(s):  
Noburu Konno ◽  
K. J. Kako

Hydrogen peroxide (H2O2) and hypochlorite (HOCl) cause a variety of cellular dysfunctions. In this study we examined the effects of these agents on the electrical potential gradient across the inner membrane of mitochondria in situ in isolated rat heart myocytes. Myocytes were prepared by collagenase digestion and incubated in the presence of H2O2 or HOCl. Transmembrane electrical gradients were measured by distribution of [3H]triphenylmethylphosphonium+, a lipophilic cation. The particulate fraction was separated from the cytosolic compartment first by permeabilization using digitonin, followed by rapid centrifugal sedimentation through a bromododecane layer. We found that the mitochondrial membrane potential (161 ± 7 mV, negative inside) was relatively well maintained under oxidant stress, i.e., the potential was decreased only at high concentrations of HOCl and H2O2 and gradually with time. The membrane potential of isolated rat heart mitochondria was affected similarly by H2O2 and HOCl in a concentration- and time-dependent manner. High concentrations of oxidants also reduced the cellular ATP level but did not significantly change the matrix volume. When the extra-mitochondrial free calcium concentration was increased in permeabilized myocytes, the transmembrane potential was decreased proportionally, and this decrease was potentiated further by H2O2. These results support the view that heart mitochondria are equipped with well-developed defense mechanisms against oxidants, but the action of H2O2 on the transmembrane electrical gradient is exacerbated by an increase in cytosolic calcium. Keywords: ATP, calcium, cardiomyocyte, cell defense, mitochondrial membrane potential, oxidant, triphenylmethylphosphonium.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Selda Sert ◽  
Nilgün Kızılcan

Purpose Cyclohexanone-formaldehyde resin (CFR) was in situ modified with olive pomace (OP) in the presence of sodium hydroxide. The purpose of this study is to produce eco-friendly OP modified cyclohexanone composite resins (OPCFCR) with a one-step method that has higher condensation reaction temperature than CFR. The water absorption properties, gloss value and cross-cut adhesion properties of the product were investigated. Design/methodology/approach Cyclohexanone, formalin (37% aqueous solution) and tannin were mixed and 20% aqueous NaOH solution was added to produce the resin. OP has environmentally friendly bio-based lignin, cellulose and phenolic compounds and the OP structure has been incorporated into the structure of the CFR resin during the in situ modification, such as resole resin and polysaccharide. The weights of pomace were used as 5% and 10% of the weight of cyclohexanone in cyclohexanone-formaldehyde composite resins, respectively. Findings There is an improvement in the properties of the OPCFCR produced from an agricultural waste that is very abundant in Gulf of Edremit region of Balikesir. The OPCFCRs were soluble in common organic solvents. The product OPCFCR has a dark red-brown color. Research limitations/implications The reaction mixture must be stirred continuously. Subsequently, 37% formalin was added dropwise in total while refluxing. The amount of aqueous NaOH solution is limited as the formed resin may become insoluble in common organic solvents. At the end of the reaction, a water-insoluble resin is obtained. Practical implications This study provides the application of ketonic resins. The OPCFCR containing phenolic groups may also promote the adhesive strength of a coating. Social implications These resins may be used for the preparation of adhesive. OP, with a large amount of catechol groups, was considered for reducing the formaldehyde emission level on the adhesive system. Originality/value OPCFCR has been synthesized in the presence of a base catalyst. Environmental and ecological concerns have increased the attention paid by chemical industry to renewable raw materials.


Sign in / Sign up

Export Citation Format

Share Document