Longitudinal distribution of periphyton algae in the Moskva river under eutrophication

2016 ◽  
Vol 43 (3) ◽  
pp. 513-521 ◽  
Author(s):  
A. G. Rusanov ◽  
V. M. Khromov
2005 ◽  
Vol 11 (5-6) ◽  
pp. 5-11
Author(s):  
A.V. Grytsai ◽  
◽  
O.M. Evtushevsky ◽  
G.P. Milinevsky ◽  
Z.I. Grytsai ◽  
...  

2020 ◽  
Vol 2020 (11-2) ◽  
pp. 82-98
Author(s):  
Vyacheslav Rozhkov

The article considers the reasons for the difficulties of etymologization ancient ethnic and geographical names of the Volga-Oka interfluve. Shows the historical background and general foundations of a number of ethnonyms, ethnotonyms and toponyms (Saami, Merya, Murom, Chud, Lob river, Ruza river, Moskva River, Moscow, Mozhaisk, Kolomna, etc.). The author presents a set of identical names of the Volga-Oka interfluve and places of established settlement of the Saami. The facts and substantiations presented in the article lead to the conclusion about the existence on the territory of the Volga-Oka interfluve before the appearance of the Slavs of regional toponymy based on the Sami and, possibly, the near Finno-Ugric languages.


Priroda ◽  
2018 ◽  
pp. 28-37
Author(s):  
A. Emelyanov ◽  
◽  
M. Kozlova ◽  
N. Shchegolkova ◽  
K. Shmonin ◽  
...  
Keyword(s):  

2009 ◽  
Vol 17 (5) ◽  
pp. 512
Author(s):  
Wu Hui-xian ◽  
Yao Jian-liang ◽  
Liu Yan ◽  
Xue Jun-zeng ◽  
Cai Qing-hua ◽  
...  

Author(s):  
MH Sastranegara ◽  
AE Pulungsari ◽  
ET Winarni ◽  
Kusbiyanto ◽  
Febry Ramdani ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karin Legerstee ◽  
Tsion E. Abraham ◽  
Wiggert A. van Cappellen ◽  
Alex L. Nigg ◽  
Johan A. Slotman ◽  
...  

AbstractFocal adhesions (FAs) are flat elongated structures that mediate cell migration and link the cytoskeleton to the extracellular matrix. Along the vertical axis FAs were shown to be composed of three layers. We used structured illumination microscopy to examine the longitudinal distribution of four hallmark FA proteins, which we also used as markers for these layers. At the FA ends pointing towards the adherent membrane edge (heads), bottom layer protein paxillin protruded, while at the opposite ends (tails) intermediate layer protein vinculin and top layer proteins zyxin and VASP extended further. At the tail tips, only intermediate layer protein vinculin protruded. Importantly, head and tail compositions were altered during HGF-induced scattering with paxillin heads being shorter and zyxin tails longer. Additionally, FAs at protruding or retracting membrane edges had longer paxillin heads than FAs at static edges. These data suggest that redistribution of FA-proteins with respect to each other along FAs is involved in cell movement.


Hydrobiologia ◽  
2021 ◽  
Author(s):  
Márk Ficsór ◽  
Zoltán Csabai

AbstractThe aim of this review is to summarize the literature knowledge about how abiotic environmental factors and biotic interactions affect the sequentially overlapping longitudinal distribution of Central European species of the net-spinning freshwater caddisfly larvae of the genus Hydropsyche (Trichoptera: Hydropsychidae). In this relation, several physical and chemical parameters of water are discussed, as well as different species-specific traits, behavioural aspects and the interaction of coexisting species. Longitudinal gradients of river networks, especially annual temperature range, flow velocity and the particle size of suspended food material play a crucial role in forming the downstream succession of characteristic species, while increased levels of organic pollution, nutrients, salinity and heavy metals facilitates the presence of more tolerant ones. Several species-specific traits, such as respiration range, net-building frequency, head capsule size or optimal net-building velocity correlate with the position of a given species in the sequence. Coexistence of species with similar ecological demands in the overlapping zones of distribution is facilitated by differences in feeding and net-building habits, microhabitat preferences and staggering life cycles, but complicated at the same time by means of inter- and intraspecific territorial behaviour, such as fighting for the ownership of larval retreats or the practice of stridulation.


2016 ◽  
Vol 13 (2) ◽  
pp. 379 ◽  
Author(s):  
Italo Masotti ◽  
Sauveur Belviso ◽  
Laurent Bopp ◽  
Alessandro Tagliabue ◽  
Eva Bucciarelli

Environmental context Models are needed to predict the importance of the changes in marine emissions of dimethylsulfide (DMS) in response to ocean warming, increased stratification and acidification, and to evaluate the potential effects on the Earth’s climate. We use complementary simulations to further our understanding of the marine cycle of DMS in subtropical waters, and show that a lack of phosphorus may exert a more important control on surface DMS concentrations than an excess of light. Abstract The occurrence of a summer DMS paradox in the vast subtropical gyres is a strong matter of debate because approaches using discrete measurements, climatological data and model simulations yielded contradictory results. The major conclusion of the first appraisal of prognostic ocean DMS models was that such models need to give more weight to the direct effect of environmental forcings (e.g. irradiance) on DMS dynamics to decouple them from ecological processes. Here, the relative role of light and phosphorus on summer DMS dynamics in subtropical waters is assessed using the ocean general circulation and biogeochemistry model NEMO-PISCES in which macronutrient concentrations were restored to monthly climatological data values to improve the representation of phosphate concentrations. Results show that the vertical and temporal decoupling between chlorophyll and DMS concentrations observed in the Sargasso Sea during the summer months is captured by the model. Additional sensitivity tests show that the simulated control of phosphorus on surface DMS concentrations in the Sargasso Sea is much more important than that of light. By extending the analysis to the whole North Atlantic Ocean, we show that the longitudinal distribution of DMS during summer is asymmetrical and that a correlation between the solar radiation dose and DMS concentrations only occurs in the Sargasso Sea. The lack of a widespread summer DMS paradox in our model simulation as well as in the comparison of discrete and climatological data could be due to the limited occurrence of phosphorus limitation in the global ocean.


Sign in / Sign up

Export Citation Format

Share Document