Changes in the Radial Increment and CO2 Distribution in Larches that Survived the Explosion of the Tunguska Space Body

2021 ◽  
Vol 34 (4) ◽  
pp. 366-371
Author(s):  
B. G. Ageev ◽  
V. A. Sapozhnikova ◽  
D. A. Savchuk
Keyword(s):  
Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1053-1056 ◽  
Author(s):  
R. S. Hunt ◽  
F. G. Peet

The spread rate of tomentosus root disease, caused by Inonotus tomentosus, was investigated by a new technique employing temporal differences in the initiation of the reduced annual radial increment between pairs of diseased trees. Pairs of infected trees (stumps) located on the periphery of disease centers were selected in each of six widely separated spruce (Picea spp.) stands in British Columbia. Distances between 12 pairs of stumps were measured, and disks were collected from each stump. Similarly, disks from four additional pairs were collected from trees in a younger stand. Uninfected control disks were collected for all sites. Tree-ring measurements were determined for all disk samples and the year in which the reduction of the annual increment attributable to I. tomentosus began was determined for infected trees. The difference between initiation years for pairs of infected trees divided into the distance between them produced an average annual spread rate of 20 cm/yr. This rate will be used in developing a model for the disease.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 163
Author(s):  
Jan Světlík ◽  
Jan Krejza ◽  
Pavel Bednář

Tree growth depends on many factors such as microsite conditions, vitality, and variations in climate and genetics. It is generally accepted that higher growth indicates both an economic benefit and better vitality of any tree. Here we use a modified approach of evaluating tree social area to study mutual tree competition based on the orientation and shape of trees social area. The investigation was performed in nine Norway spruce stands in the Czech Republic. The objective of this study performed from 2008 to 2012 was to quantify relative tree radial increments with respect to the lowest and highest competition found in specific sectors of tree social area (AS). Specific groups of trees (tree classes) were evaluated according to their classes (dominant, co-dominant and sub-dominant) and their composition status in ninety-degree sectors of AS using established classifying rules. The results showed that a spatially-available area (AA) is an inappropriate parameter for predicting tree growth, whereas AS provided robust explanatory power to predict relative radial growth. Tree size was observed as an important indicator of relative radial increments. A significantly positive correlation was found for a radial increment of sub-dominant trees with the lowest competition from western directions; whereas a negative correlation was observed when the lowest competition was observed from eastern directions. For dominant trees, there was an evident growth reaction only when more than 50% of the AS was oriented towards one of the cardinal points. Individual differences in the orientation of tree AS may be important parameters with regard to competition and its spatial variability within an area surrounding a particular tree and deserve more detailed attention in tree growth models and practice.


IAWA Journal ◽  
2008 ◽  
Vol 29 (2) ◽  
pp. 189-207 ◽  
Author(s):  
Claudio S. Lisi ◽  
Mário Tomazello Fo ◽  
Paulo C. Botosso ◽  
Fidel A. Roig ◽  
Vivian R.B. Maria ◽  
...  

Many tropical tree species produce growth rings in response to seasonal environmental factors that influence the activity of the vascular cambium. We applied the following methods to analyze the annual nature of treering formation of 24 tree species from a seasonal semi-deciduous forest of southeast Brazil: describing wood anatomy and phenology, counting tree rings after cambium markings, and using permanent dendrometer bands. After 7 years of systematic observations and measurements, we found the following: the trees lost their leaves during the dry season and grew new leaves at the end of the same season; trunk increment dynamics corresponded to seasonal changes in precipitation, with higher increment (active period) during the rainy season (October–April) and lower increment (dormant period) during the dry season (May–September); the number of tree rings formed after injuries to the cambium coincided with the number of years since the extraction of the wood samples. As a result of these observations, it was concluded that most study trees formed one growth ring per year. This suggests that tree species from the seasonal semi-deciduous forests of Brazil have an annual cycle of wood formation. Therefore, these trees have potential for use in future studies of tree age and radial growth rates, as well as to infer ecological and regional climatic conditions. These future studies can provide important information for the management and conservation of these endangered forests.


2017 ◽  
Vol 10 (5) ◽  
pp. 476-487 ◽  
Author(s):  
A. V. Demina ◽  
L. V. Belokopytova ◽  
S. G. Andreev ◽  
T. V. Kostyakova ◽  
E. A. Babushkina

Science ◽  
1963 ◽  
Vol 139 (3551) ◽  
pp. 222-223 ◽  
Author(s):  
G. M. Woodwell ◽  
L. N. Miller

Author(s):  
O. S. Zheleznova ◽  
S. A. Tobratov

This paper is devoted to the patterns of radial growth of Scots pine (Pinus sylvestris L.) in various topoecological conditions of the Meshchera lowland (Ryazan region, the East European plain). The generalized tree-ring chronologies are constructed for 16 habitats differing in features of a relief of a day surface and a bedrock surface. Despite the relatively low-contrast relief of Meshchera, the average radial pine increment within the study area differs by 2.5 times (1.53.9 mm per year). The correlation and cluster analyses revealed that the key factor influencing the width of annual tree rings of pine is the amount of the available soil moisture. Its surplus (in wetlands) and deficiency (in conditions of sandy outliers) negatively affects the radial pine increment. It is established that in the waterlogged habitats positive correlation of the radial pine increment with temperature and negative with precipitation of autumn of the previous year is observed. The positive correlation of the radial increment with precipitation of autumn, May and with winter temperature is typical for a pine from arid habitats. The negative relationship between the pines growth and amount of precipitation and river discharge may occur with a lag of 14 years in conditions of wetlands. The positive relationship of the radial pine increment with the integral parameters of the current years moisture is more significant in conditions of relatively high hydrodynamics (for example, in conditions of sandy outliers).


1972 ◽  
Vol 2 (1) ◽  
pp. 11-15 ◽  
Author(s):  
H. F. Cerezke

Wood discs cut from 23-year-old lodgepole pine (Pinuscontorta Dougl. var. lalifolia Engelm.) stems were analyzed for vertical and radial resin duct densities adjacent to basal injuries caused by the weevil, Hylobiuswarreni Wood. The injury from single attacks continued for at least 2 years and was characterized by reduced radial growth and an abundance of vertical 'traumatic' resin ducts above the wounds. No increase in radial duct density was detected above the wounds.


2018 ◽  
Vol 48 (8) ◽  
pp. 930-941 ◽  
Author(s):  
Arne Nothdurft ◽  
Sonja Vospernik

A novel methodological framework is presented for climate-sensitive modeling of annual radial stem increment using year-ring width time series. The approach is based on a generalized additive model with penalized regression splines together with a distributed time lag model taking into account smooth nonlinear effects of a series of monthly temperature and precipitation values, as well as their interactions. Climate effects are also assumed to vary smoothly with time lag. The model framework enables both the detrending of the individual time series and the regression modeling to be performed simultaneously in a single model step. The approach is applied to year-ring width time series of Norway spruce (Picea abies (L.) H. Karst.) trees in Tyrol, Austria. The marginal response curves show that tree growth is mainly promoted by high temperatures in late spring and early summer and by precipitation in fall and winter. Summer drought does not have a negative influence on the current year’s radial increment; however, when it is associated with high temperatures, it lowers the increment in the subsequent growth period. Higher winter precipitation in conjunction with lower temperatures has a positive effect. A significant non-climate related long-term growth trend is demonstrated, probably reflecting NOx and SO2 emission trends in Austria.


Sign in / Sign up

Export Citation Format

Share Document