Relation between adsorption from binary solutions and adsorption of pure gaseous components on the same adsorbent. The effect of the bulk liquid phase

1980 ◽  
Vol 45 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Marie Šišková

The thermodynamic consistency test proposed by Sircar and Myers was employed to show the effect of the bulk liquid phase on the adsorption from solutions on a solid adsorbent. This effect can invalidate the prediction of the isotherm of the concentration change in a solution from experimental adsorption isotherms of pure components adsorbed from the gaseous phase on the same adsorbent.

1999 ◽  
Vol 39 (4) ◽  
pp. 85-92 ◽  
Author(s):  
J. Behrendt

A mathematical model for nitrification in an aerated fixed bed reactor has been developed. This model is based on material balances in the bulk liquid, gas phase and in the biofilm area. The fixed bed is divided into a number of cells according to the reduced remixing behaviour. A fixed bed cell consists of 4 compartments: the support, the gas phase, the bulk liquid phase and the stagnant volume containing the biofilm. In the stagnant volume the biological transmutation of the ammonia is located. The transport phenomena are modelled with mass transfer formulations so that the balances could be formulated as an initial value problem. The results of the simulation and experiments are compared.


ChemInform ◽  
2015 ◽  
Vol 46 (17) ◽  
pp. no-no
Author(s):  
Yueer Yan ◽  
Xiao Guo ◽  
Yahong Zhang ◽  
Yi Tang

2000 ◽  
Vol 651 ◽  
Author(s):  
A.M. Lacasta ◽  
J.M. Sancho ◽  
F. Sagues ◽  
G. Oshanin

AbstractWe study propagation dynamics of a particle phase in a single-file pore connected to a reservoir of particles (bulk liquid phase). We show that the total mass M(t) of particles entering the pore up to time t grows as (Mt) = 2m(J,ρF) √D0t, where D0 is the “bare” di usion coeffcient and the prefactor m(J,ρF) is a non-trivial function of the reservoir density ρF and the amplitude J of attractive particle-particle interactions. Behavior of the dynamic density pro les is also discussed.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jose Luis Rivera ◽  
Homero Nicanor-Guzman ◽  
Roberto Guerra-Gonzalez

The critical point affects the coexistence behavior of the vapor-liquid equilibrium densities. The length of the critical influence zone is under debate because for some properties, like shear viscosity, the extension is only a few degrees, while for others, such as the density order parameter, the critical influence zone covers up to hundreds of degrees below the critical temperature. Here we show that, for ethane, the experimental critical influence zone covers a wide zone of tens of degrees (below the critical temperature) down to a transition temperature, at which the apparent critical influence zone vanishes, and the transition temperature can be predicted through a pressure analysis of the coexisting bulk liquid phase, using a simple molecular potential. The liquid phases within the apparent critical influence zone show low densities, making them behave internally like their corresponding vapor phases. Therefore, Molecular Dynamics simulations reveal that the experimentally observed wide extension of the critical influence zone is the result of a vapor-like effect due to low bulk liquid phase densities.


2018 ◽  
Vol 20 (1) ◽  
pp. 435-448 ◽  
Author(s):  
Majid Moosavi ◽  
Fatemeh Khashei ◽  
Elaheh Sedghamiz

The structural and dynamical properties of two dicationic ionic liquids, i.e. [Cn(mim)2][NTf2]2 with n = 3 and 5, have been studied to obtain a fundamental understanding of the molecular basis of the macroscopic and microscopic properties of the bulk liquid phase.


Sign in / Sign up

Export Citation Format

Share Document