A comparison of methods for determining dipole moments in solution

1981 ◽  
Vol 46 (4) ◽  
pp. 1002-1010 ◽  
Author(s):  
Otto Exner

The equation (1) - (6) serving to determine dipole moments in solution were statistically tested on selected experimental data. Two kinds of data sets were used, referring to compounds with zero and non-zero dipole moments, respectively. Essentially the same results were obtained with the methods of Guggenheim-Smith, Eq. (3), of Halverstadt-Kumler, Eq. (1), and with the complete Debye equation (2). The differences between them are less important than the error introduced by estimating the atomic polarization to 5-15% of the molecular refraction and/or by calculating the latter from increments. More sophisticated equations (4) and (5) based on the Onsager theory do not yield better results than the Debye theory, this means that the agreement with the gas phase values is not improved.

1980 ◽  
Vol 35 (7) ◽  
pp. 748-756 ◽  
Author(s):  
Ivan Botskor

A method for determining the orientation of the total dipole moments of distinct rotamers of the same molecule is discussed. Utilizing solely the experimental dipole moments obtained with microwave spectroscopy (gas phase) and an approximate structure, the orientation of the dipole moment can often be determined without use of bond moment considerations. Experimental data from nine rotamer pairs are analyzed to illustrate the method.


2004 ◽  
Vol 69 (12) ◽  
pp. 2134-2146 ◽  
Author(s):  
Esther Quintanilla ◽  
Juan Z. Dávalos ◽  
Rebeca Herrero ◽  
Pilar Jiménez ◽  
Ibon Alkorta ◽  
...  

Here we report the results of the study of a set of thirteen hydrocarbons R-H not leading to extensively charge-delocalized anions R- upon ionization, R-H → R- + H+. It essentially involves the following: (i) The computation at the G2 level of the changes in thermodynamic state functions for this process in the gas phase. The reliability of the computational method was further assessed by comparison with CCSD(T)/Aug-cc-pVTZ results. (ii) A direct comparison of the experimentally available thermodynamic (gas phase) and kinetic (solution) data pertaining to this reaction. (iii) A careful re-examination of the experimental data sets and the Brønsted-type relationships derived therefrom by using the computed thermodynamic data. This treatment suggests the existence of mechanistic features affecting the experimental data and indicates the need for further experimental and computational work.


1986 ◽  
Vol 51 (6) ◽  
pp. 1222-1239 ◽  
Author(s):  
Pavel Moravec ◽  
Vladimír Staněk

Expression have been derived in the paper for all four possible transfer functions between the inlet and the outlet gas and liquid steams under the counter-current absorption of a poorly soluble gas in a packed bed column. The transfer functions have been derived for the axially dispersed model with stagnant zone in the liquid phase and the axially dispersed model for the gas phase with interfacial transport of a gaseous component (PDE - AD). calculations with practical values of parameters suggest that only two of these transfer functions are applicable for experimental data evaluation.


1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


1989 ◽  
Vol 54 (11) ◽  
pp. 2933-2950
Author(s):  
Emerich Erdös ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma

This paper represents a continuation and ending of the kinetic study of the gallium arsenide formation, where a so-called inhomogeneous model is proposed and quantitatively formulated in five variants, in which two kinds of active centres appear. This model is compared both with the experimental data and with the previous sequence of homogeneous models.


Author(s):  
Cyprian Suchocki ◽  
Stanisław Jemioło

AbstractIn this work a number of selected, isotropic, invariant-based hyperelastic models are analyzed. The considered constitutive relations of hyperelasticity include the model by Gent (G) and its extension, the so-called generalized Gent model (GG), the exponential-power law model (Exp-PL) and the power law model (PL). The material parameters of the models under study have been identified for eight different experimental data sets. As it has been demonstrated, the much celebrated Gent’s model does not always allow to obtain an acceptable quality of the experimental data approximation. Furthermore, it is observed that the best curve fitting quality is usually achieved when the experimentally derived conditions that were proposed by Rivlin and Saunders are fulfilled. However, it is shown that the conditions by Rivlin and Saunders are in a contradiction with the mathematical requirements of stored energy polyconvexity. A polyconvex stored energy function is assumed in order to ensure the existence of solutions to a properly defined boundary value problem and to avoid non-physical material response. It is found that in the case of the analyzed hyperelastic models the application of polyconvexity conditions leads to only a slight decrease in the curve fitting quality. When the energy polyconvexity is assumed, the best experimental data approximation is usually obtained for the PL model. Among the non-polyconvex hyperelastic models, the best curve fitting results are most frequently achieved for the GG model. However, it is shown that both the G and the GG models are problematic due to the presence of the locking effect.


2014 ◽  
Vol 11 (2) ◽  
pp. 68-79
Author(s):  
Matthias Klapperstück ◽  
Falk Schreiber

Summary The visualization of biological data gained increasing importance in the last years. There is a large number of methods and software tools available that visualize biological data including the combination of measured experimental data and biological networks. With growing size of networks their handling and exploration becomes a challenging task for the user. In addition, scientists also have an interest in not just investigating a single kind of network, but on the combination of different types of networks, such as metabolic, gene regulatory and protein interaction networks. Therefore, fast access, abstract and dynamic views, and intuitive exploratory methods should be provided to search and extract information from the networks. This paper will introduce a conceptual framework for handling and combining multiple network sources that enables abstract viewing and exploration of large data sets including additional experimental data. It will introduce a three-tier structure that links network data to multiple network views, discuss a proof of concept implementation, and shows a specific visualization method for combining metabolic and gene regulatory networks in an example.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550050 ◽  
Author(s):  
E. Matsinos ◽  
G. Rasche

In a previous paper, we reported the results of a partial-wave analysis (PWA) of the pion–nucleon (πN) differential cross-sections (DCSs) of the CHAOS Collaboration and came to the conclusion that the angular distribution of their π+p data sets is incompatible with the rest of the modern (meson factory) database. The present work, re-addressing this issue, has been instigated by a number of recent improvements in our analysis, namely regarding the inclusion of the theoretical uncertainties when investigating the reproduction of experimental data sets on the basis of a given "theoretical" solution, modifications in the parametrization of the form factors of the proton and of the pion entering the electromagnetic part of the πN amplitude, and the inclusion of the effects of the variation of the σ-meson mass when fitting the ETH model of the πN interaction to the experimental data. The new analysis of the CHAOS DCSs confirms our earlier conclusions and casts doubt on the value for the πN Σ term, which Stahov, Clement and Wagner have extracted from these data.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3811
Author(s):  
Iosif Sorin Fazakas-Anca ◽  
Arina Modrea ◽  
Sorin Vlase

This paper proposes a new method for calculating the monomer reactivity ratios for binary copolymerization based on the terminal model. The original optimization method involves a numerical integration algorithm and an optimization algorithm based on k-nearest neighbour non-parametric regression. The calculation method has been tested on simulated and experimental data sets, at low (<10%), medium (10–35%) and high conversions (>40%), yielding reactivity ratios in a good agreement with the usual methods such as intersection, Fineman–Ross, reverse Fineman–Ross, Kelen–Tüdös, extended Kelen–Tüdös and the error in variable method. The experimental data sets used in this comparative analysis are copolymerization of 2-(N-phthalimido) ethyl acrylate with 1-vinyl-2-pyrolidone for low conversion, copolymerization of isoprene with glycidyl methacrylate for medium conversion and copolymerization of N-isopropylacrylamide with N,N-dimethylacrylamide for high conversion. Also, the possibility to estimate experimental errors from a single experimental data set formed by n experimental data is shown.


Sign in / Sign up

Export Citation Format

Share Document