Simulation of mechanically stirred two-phase liquid-gas flow

1986 ◽  
Vol 51 (5) ◽  
pp. 1001-1015 ◽  
Author(s):  
Ivan Fořt ◽  
Vladimír Rogalewicz ◽  
Miroslav Richter

The study describes simulation of the motion of bubbles in gas, dispersed by a mechanical impeller in a turbulent low-viscosity liquid flow. The model employs the Monte Carlo method and it is based both on the knowledge of the mean velocity field of mixed liquid (mean motion) and of the spatial distribution of turbulence intensity ( fluctuating motion) in the investigated system - a cylindrical tank with radial baffles at the wall and with a standard (Rushton) turbine impeller in the vessel axis. Motion of the liquid is then superimposed with that of the bubbles in a still environment (ascending motion). The computation of the simulation includes determination of the spatial distribution of the gas holds-up (volumetric concentrations) in the agitated charge as well as of the total gas hold-up system depending on the impeller size and its frequency of revolutions, on the volumetric gas flow rate and the physical properties of gas and liquid. As model parameters, both liquid velocity field and normal gas bubbles distribution characteristics are considered, assuming that the bubbles in the system do not coalesce.

AIChE Journal ◽  
1995 ◽  
Vol 41 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Carl M. Stoots ◽  
Richard V. Calabrese

2011 ◽  
Vol 672 ◽  
pp. 5-32 ◽  
Author(s):  
OUTI TAMMISOLA ◽  
ATSUSHI SASAKI ◽  
FREDRIK LUNDELL ◽  
MASAHARU MATSUBARA ◽  
L. DANIEL SÖDERBERG

The stability of a plane liquid sheet is studied experimentally and theoretically, with an emphasis on the effect of the surrounding gas. Co-blowing with a gas velocity of the same order of magnitude as the liquid velocity is studied, in order to quantify its effect on the stability of the sheet. Experimental results are obtained for a water sheet in air at Reynolds number Rel = 3000 and Weber number We = 300, based on the half-thickness of the sheet at the inlet, water mean velocity at the inlet, the surface tension between water and air and water density and viscosity. The sheet is excited with different frequencies at the inlet and the growth of the waves in the streamwise direction is measured. The growth rate curves of the disturbances for all air flow velocities under study are found to be within 20% of the values obtained from a local spatial stability analysis, where water and air viscosities are taken into account, while previous results from literature assuming inviscid air overpredict the most unstable wavelength with a factor 3 and the growth rate with a factor 2. The effect of the air flow on the stability of the sheet is scrutinized numerically and it is concluded that the predicted disturbance growth scales with (i) the absolute velocity difference between water and air (inviscid effect) and (ii) the square root of the shear from air on the water surface (viscous effect).


2020 ◽  
Author(s):  
Ludovic Räss ◽  
Nina S.C. Simon ◽  
Yury Y. Podladchikov

<p>A wide variety of fluid-rich natural systems exhibit a distinct pulsating signature on geophysical measurements. Identifying the processes leading to these observed pulses are key to further understand important multi-scale and multi-physics valve-like dynamics in natural environments such as gas flow in volcanic systems, magma transport in the crust, tremors and slip or subsurface flow migration. These natural two-phase systems share common features as they can be described as viscously deforming saturated porous media. They exhibit a time-dependant deformation of their porous matrix, buoyant pore-fluid, an effective pressure dependant bulk viscosity and a nonlinear porosity-permeability relation.</p><p>We here investigate the role of coupled hydro-mechanical processes to trigger pulsating localised fluid expulsions. We show that the pulsating regime may be a natural outcome of the interactions between a viscously deforming porous matrix and a nonlinear pore-fluid flow. We rely on high-resolution direct numerical two-phase flow calculations in three dimensions to explore what parameters control the main characteristics of the pulsating signal. We are particularly interested in how amplitudes, wave lengths and frequencies of the signal relate to the input model parameters.</p><p>We show that repeated fluid pulses are a natural outcome of the coupled Stokes and Darcy equations within the nonlinear viscous two-phase flow regime. We discuss the relevance of our findings in light of the valve-like behaviour in a variety of natural fluid-rich environments. We propose to use the characteristic of the pulsating signal to gain further insight in the dynamics of complex natural systems.</p>


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Haiwang Li ◽  
Teck Neng Wong ◽  
Martin Skote ◽  
Fei Duan

This paper presents the predictions of the axial distribution of liquid level and interfacial level gradient (ILG) for nonuniform non-Newtonian liquid-gas flow in horizontal tubes. The non-Newtonian liquid is described using power-law model, while the model of Heywood and Charles for uniform non-Newtonian liquid-gas two-phase flow, which was developed based on one dimensional energy equation, is extended to describe nonuniform stratified flow by incorporating the effect of interfacial level gradient. Two different critical liquid levels are found from the energy equation and are adopted as boundary condition to calculate the interfacial level distribution upstream of the channel exit. The results from the model are compared with the published numerical and experimental data. The results show that the model can predict the interfacial level distribution and interfacial level gradient for nonuniform stratified flow. Low liquid velocity, low gas velocity and high liquid viscosity are beneficial for forming a nonuniform flow with interfacial level gradient. The difference between the analytical model and the published data is smaller than 10%.


2000 ◽  
Vol 20 (1Supplement) ◽  
pp. 339-342 ◽  
Author(s):  
Yasushi SAITO ◽  
Takashi HIBIKI ◽  
Kaichiro MISHIMA ◽  
Yoshiharu TOBITA ◽  
Tohru SUZUKI ◽  
...  

1968 ◽  
Vol 8 (04) ◽  
pp. 325-330
Author(s):  
Alan D. Modine ◽  
Keith H. Coats

Abstract A mathematical model has been formulated for simulating three-dimensional displacement of a viscous fluid by a displacing fluid of zero viscosity. The model has been incorporated into a FORTRAN IV computer program for application in low-rate, high-permeability systems. Where applicable, the zero-viscosity program reduces computer time by a factor of 5 to 10 relative to conventional two- and three-dimensional programs. To determine the area of applicability, a gas-oil cross-section model representation of a high-dip, high-permeability reservoir was simulated with the zero-viscosity and conventional two-dimension programs for a range of flow rates up to 80 percent programs for a range of flow rates up to 80 percent of the critical rate. In comparing the two solutions, the conventional one was assumed to be the correct one because its program is based upon a more physically realistic model than that of the physically realistic model than that of the zero-viscosity solution. The two solutions agreed at rates up to 50 percent of the critical; at 80 percent they disagreed significantly. This indicates percent they disagreed significantly. This indicates that the zero-viscosity model, which is quite simple and inexpensive to apply, can be used with accuracy at rates up to at least 50 percent of the critical. This area of applicability is important in improving computational capability, for it is at these lower rates that the conventional programs are excessively costly. At the higher rates, where the zero-viscosity solution is not accurate, the conventional programs are easy and economical to apply. The zero-viscosity model accounts for capillary and gravitational forces, effects of viscosity and relative permeability for the displaced phase, and arbitrary reservoir heterogeneity. The program handles up to 1,800 blocks on an in-core basis. Introduction Computational difficulties caused by slow or metastable convergence in gas-oil calculations using conventional two-phase reservoir simulation programs have been correlatable with the effects of programs have been correlatable with the effects of low viscosity in the gas phase. In many such problems, a very small deviation in the calculated problems, a very small deviation in the calculated flow potentials causes a large deviation in the calculated gas flow due to the low viscosity. Thus, the program is trying to converge on a small variation in potential, which makes the computations difficult. A previous method of overcoming this difficulty has been to introduce in the conventional two-phase calculations an artificial resistance to gas flow; this method causes a more significant variation in the calculated flow potential. This paper describes a new method for treatment of gas-oil problems in which a zero-viscosity gas phase is used. Both methods are based on the assumption that oil mobility is the controlling factor in the displacement and that the behavior is insensitive to gas mobility over a relatively wide range. We show that the two methods give identical results, and since the correct gas mobility is bracketed by the two methods, we may conclude that either method gives valid results for low rate displacements. The chief advantage of the zero-viscosity program is lower computing costs. This report presents a mathematical description of the zero-viscosity model and compares saturation distributions calculated for several typical problems using the zero-viscosity and conventional two-phase programs. ZERO-VISCOSITY MODEL The zero-viscosity model simulates the immiscible displacement of a viscous fluid by a displacing fluid of zero viscosity. The method includes the effects of capillary and gravitational forces, relative permeability and viscosity in the displaced phase, permeability and viscosity in the displaced phase, and arbitrary reservoir heterogeneity. SPEJ P. 325


2019 ◽  
Vol 196 ◽  
pp. 00051 ◽  
Author(s):  
Nikolay Sibiryakov ◽  
Oleg Kabov ◽  
Valentin Belosludstev

Minichannel cooling systems show great potential for small scale electronics. In this paper we analytically and numerically investigate flow with evaporation in open triangular minichannels without upper gas flow. It models processes either in a groove or in an individual channel. From the laws of mass, momentum and energy conservation we derive equations for mean velocity and for the depth of the liquid. These equations have been solved numerically. The viscosity limits maximum fluid speed and causes the formation of dry spots. The heat flux reaches 40kW/m2 for initial liquid velocity 2 m/s. It is demonstrated that triangular or grooved channels even without upper gas flow are perspective for cooling systems.


10.14311/600 ◽  
2004 ◽  
Vol 44 (4) ◽  
Author(s):  
J. Kratěna ◽  
I. Fořt

The discharge stream from a standard Rushton turbine impeller exhibits special flow properties different from the characteristics of the velocity field in other parts of the volume of an agitated liquid in a cylindrical baffled vessel, e.g. two prevailing components of the mean velocity (radial and tangential), high rate of turbulent energy dissipation and anisotropy of turbulence in this region. At the same time, the discharge stream plays an important role in mixing operations, above all in liquid-liquid and gas-liquid systems.This paper deals with theoretical and experimental studies of the velocity field and flow of angular momentum in a discharge stream from a standard Rushton turbine impeller in a cylindrical baffled flat bottomed vessel under turbulent regime of flow of an agitated liquid with emphasis on describing the ensemble averaged values over the whole interval of the tangential coordinate around the vessel perimeter.


1999 ◽  
Vol 121 (2) ◽  
pp. 91-95 ◽  
Author(s):  
J. Y. Cai ◽  
M. Gopal ◽  
W. P. Jepson

Multiphase oil/water/gas flow regime transition studies are carried out in a 10-cm i.d., 18-m long pipe at inclinations of ±2 deg at system pressures between 0 to 0.79 MPa. The results are compared to those of other researchers, and the effects of pressure, inclination, and liquid viscosity are shown. The water cut of the liquid has some effects on the transition from stratified to slug flow. Increasing the water cut results in the transition occurring at higher liquid velocity at the same gas velocity. Water cut has little effect on the slug/annular transition for low viscosity oil used. The system pressure has a moderate effect on the transition from stratified to slug and slug to annular. For the transition from stratified to slug, increasing the system pressure requires higher liquid velocity. The transition from slug to annular occurs at lower liquid velocity with increasing the system pressures. The inclination of the pipe has little effect on the transition from slug to annular flow. Increasing the inclination causes the transition to occur at approximately the same gas velocity at the same liquid velocity. The experimental results show a good agreement with Wilkens’ model.


Sign in / Sign up

Export Citation Format

Share Document