scholarly journals Study of the Discharge Stream from a Standard Rushton turbine impeller

10.14311/600 ◽  
2004 ◽  
Vol 44 (4) ◽  
Author(s):  
J. Kratěna ◽  
I. Fořt

The discharge stream from a standard Rushton turbine impeller exhibits special flow properties different from the characteristics of the velocity field in other parts of the volume of an agitated liquid in a cylindrical baffled vessel, e.g. two prevailing components of the mean velocity (radial and tangential), high rate of turbulent energy dissipation and anisotropy of turbulence in this region. At the same time, the discharge stream plays an important role in mixing operations, above all in liquid-liquid and gas-liquid systems.This paper deals with theoretical and experimental studies of the velocity field and flow of angular momentum in a discharge stream from a standard Rushton turbine impeller in a cylindrical baffled flat bottomed vessel under turbulent regime of flow of an agitated liquid with emphasis on describing the ensemble averaged values over the whole interval of the tangential coordinate around the vessel perimeter.

1979 ◽  
Vol 44 (3) ◽  
pp. 700-710 ◽  
Author(s):  
Ivan Fořt ◽  
Hans-Otto Möckel ◽  
Jan Drbohlav ◽  
Miroslav Hrach

Profiles of the mean velocity have been analyzed in the stream streaking from the region of rotating standard six-blade disc turbine impeller. The profiles were obtained experimentally using a hot film thermoanemometer probe. The results of the analysis is the determination of the effect of relative size of the impeller and vessel and the kinematic viscosity of the charge on three parameters of the axial profile of the mean velocity in the examined stream. No significant change of the parameter of width of the examined stream and the momentum flux in the stream has been found in the range of parameters d/D ##m <0.25; 0.50> and the Reynolds number for mixing ReM ##m <2.90 . 101; 1 . 105>. However, a significant influence has been found of ReM (at negligible effect of d/D) on the size of the hypothetical source of motion - the radius of the tangential cylindrical jet - a. The proposed phenomenological model of the turbulent stream in region of turbine impeller has been found adequate for values of ReM exceeding 1.0 . 103.


1986 ◽  
Vol 51 (5) ◽  
pp. 1001-1015 ◽  
Author(s):  
Ivan Fořt ◽  
Vladimír Rogalewicz ◽  
Miroslav Richter

The study describes simulation of the motion of bubbles in gas, dispersed by a mechanical impeller in a turbulent low-viscosity liquid flow. The model employs the Monte Carlo method and it is based both on the knowledge of the mean velocity field of mixed liquid (mean motion) and of the spatial distribution of turbulence intensity ( fluctuating motion) in the investigated system - a cylindrical tank with radial baffles at the wall and with a standard (Rushton) turbine impeller in the vessel axis. Motion of the liquid is then superimposed with that of the bubbles in a still environment (ascending motion). The computation of the simulation includes determination of the spatial distribution of the gas holds-up (volumetric concentrations) in the agitated charge as well as of the total gas hold-up system depending on the impeller size and its frequency of revolutions, on the volumetric gas flow rate and the physical properties of gas and liquid. As model parameters, both liquid velocity field and normal gas bubbles distribution characteristics are considered, assuming that the bubbles in the system do not coalesce.


2018 ◽  
Vol 857 ◽  
pp. 345-373 ◽  
Author(s):  
Davide Gatti ◽  
Andrea Cimarelli ◽  
Yosuke Hasegawa ◽  
Bettina Frohnapfel ◽  
Maurizio Quadrio

This paper addresses the integral energy fluxes in natural and controlled turbulent channel flows, where active skin-friction drag reduction techniques allow a more efficient use of the available power. We study whether the increased efficiency shows any general trend in how energy is dissipated by the mean velocity field (mean dissipation) and by the fluctuating velocity field (turbulent dissipation). Direct numerical simulations (DNS) of different control strategies are performed at constant power input (CPI), so that at statistical equilibrium, each flow (either uncontrolled or controlled by different means) has the same power input, hence the same global energy flux and, by definition, the same total energy dissipation rate. The simulations reveal that changes in mean and turbulent energy dissipation rates can be of either sign in a successfully controlled flow. A quantitative description of these changes is made possible by a new decomposition of the total dissipation, stemming from an extended Reynolds decomposition, where the mean velocity is split into a laminar component and a deviation from it. Thanks to the analytical expressions of the laminar quantities, exact relationships are derived that link the achieved flow rate increase and all energy fluxes in the flow system with two wall-normal integrals of the Reynolds shear stress and the Reynolds number. The dependence of the energy fluxes on the Reynolds number is elucidated with a simple model in which the control-dependent changes of the Reynolds shear stress are accounted for via a modification of the mean velocity profile. The physical meaning of the energy fluxes stemming from the new decomposition unveils their inter-relations and connection to flow control, so that a clear target for flow control can be identified.


Author(s):  
Bohua Sun

Based on author's previous work [Sun, B. The Reynolds Navier-Stokes Turbulence Equations of Incompressible Flow Are Closed Rather Than Unclosed. Preprints 2018, 2018060461 (doi: 10.20944/preprints201806.0461.v1)], this paper proposed an explicit representation of velocity fluctuation and formulated the Reynolds stress tensor in terms of the mean velocity field. The proposed closed Reynolds Navier-Stokes turbulence formulations reveal that the mean vorticity is the key source of producing turbulence.


AIChE Journal ◽  
1995 ◽  
Vol 41 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Carl M. Stoots ◽  
Richard V. Calabrese

2014 ◽  
Vol 757 ◽  
pp. 498-513 ◽  
Author(s):  
Carlo Zúñiga Zamalloa ◽  
Henry Chi-Hin Ng ◽  
Pinaki Chakraborty ◽  
Gustavo Gioia

AbstractUnlike the classical scaling relations for the mean-velocity profiles of wall-bounded uniform turbulent flows (the law of the wall, the defect law and the log law), which are predicated solely on dimensional analysis and similarity assumptions, scaling relations for the turbulent-energy spectra have been informed by specific models of wall turbulence, notably the attached-eddy hypothesis. In this paper, we use dimensional analysis and similarity assumptions to derive three scaling relations for the turbulent-energy spectra, namely the spectral analogues of the law of the wall, the defect law and the log law. By design, each spectral analogue applies in the same spatial domain as the attendant scaling relation for the mean-velocity profiles: the spectral analogue of the law of the wall in the inner layer, the spectral analogue of the defect law in the outer layer and the spectral analogue of the log law in the overlap layer. In addition, as we are able to show without invoking any model of wall turbulence, each spectral analogue applies in a specific spectral domain (the spectral analogue of the law of the wall in the high-wavenumber spectral domain, where viscosity is active, the spectral analogue of the defect law in the low-wavenumber spectral domain, where viscosity is negligible, and the spectral analogue of the log law in a transitional intermediate-wavenumber spectral domain, which may become sizable only at ultra-high$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Re}_{\tau }$), with the implication that there exist model-independent one-to-one links between the spatial domains and the spectral domains. We test the spectral analogues using experimental and computational data on pipe flow and channel flow.


1996 ◽  
Vol 118 (3) ◽  
pp. 602-610 ◽  
Author(s):  
Per Petersson ◽  
Magnus Larson ◽  
Lennart Jo¨nsson

The velocity field downstream of a model impeller operating in water was measured using a two-component laser doppler velocimeter. The investigation focussed on the spatial development of the mean velocity in the axial, radial, and circumferential direction, although simultaneous measurements were performed of the velocity unsteadiness from which turbulence characteristics were inferred. The measurements extended up to 12 impeller diameters downstream of the blades displaying the properties of the generated swirling jet both in the zone of flow establishment and the zone of established flow. The division between these zones was made based on similarity of the mean axial velocity profile. Integral properties of the flow such as volume and momentum flux were computed from the measured velocity profiles. The transverse spreading of the impeller jet and its development towards self-similarity were examined and compared with non-swirling jets and swirling jets generated by other means.


1983 ◽  
Vol 105 (3) ◽  
pp. 364-368 ◽  
Author(s):  
J. R. Missimer ◽  
L. C. Thomas

The two-dimensional, incompressible, fully-developed, turbulent plane Couette flow is a limiting case of circular Couette flow. As such, plane Couette flow analyses have been used in lubrication theory to analyze the lubrication flow in an unloaded journal bearings. A weakness of existing analyses, other than the turbulent burst analysis, is that they are not capable of characterizing the transitional turbulent regime. The objective of the proposed paper is to develop a model of the turbulent burst phenomenon for momentum in transitional turbulent and fully turbulent plane Couette flow. Model closure is obtained by specification of the mean turbulent burst frequency and, for moderate to high Reynolds numbers, by interfacing with classical eddy diffusivity models for the turbulent core. The analysis is shown to produce predictions for the mean velocity profile and friction factor that are in good agreement with published experimental data for transitional turbulent and fully turbulent flow. This approach to modeling the wall region involves a minimum level of empiricism and provides a fundamental basis for generalization. The use of the present analysis extends the applicability of plane Couette flow analysis in lubrication problems to the transitional turbulent regime.


Author(s):  
Bohua Sun

This paper proposed an explicit and simple representation of velocity fluctuation and the Reynolds stress tensor in terms of the mean velocity field. The proposed turbulence equations are closed. The proposed formulations reveal that the mean vorticity is the key source of producing turbulence. It is found that there are no velocity fluctuation and turbulence if there were no vorticity. As a natural consequence, the laminar- turbulence transition condition was obtained in a rational way.


Sign in / Sign up

Export Citation Format

Share Document