scholarly journals THU0008 DEVELOPMENT OF A NOVEL TRANSLATIONAL IN SILICO INDICATION DISCOVERY FRAMEWORK: EXEMPLIFIED BY THE CLINICAL COMPOUND CENERIMOD

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 216.2-217
Author(s):  
D. Hartl ◽  
M. Keller ◽  
A. Klenk ◽  
M. Murphy ◽  
M. Martinic ◽  
...  

Background:To explore the full therapeutic spectrum of a drug it is crucial to consider its potential effectiveness in all diseases. Serendipitous clinical observations have often shown that approved drugs and those in development to be efficacious in indications different to those originally tested for. Traditional approaches to match a drug candidate with possible indications are mostly based on matching drug mechanistic knowledge with disease pathophysiology. Proof-of-concept trials or elaborate pre-clinical studies in animal models do not allow for a broad assessment due to high costs and slow progress. Gene expression changes in patients or animal models represent a good proxy to comprehensively assess both disease and drug effects. Furthermore, this data type can be integrated with a plethora of publicly available data.Objectives:Generation of a novel in silico framework to support the selection and expansion of potential indications which associate with a compound or approved drug. The framework was exemplified by the clinical compound cenerimod, a potent, selective, and orally active sphingosine-1-phosphate receptor 1 modulator (Piali et al., 2017).Methods:A total of ~13’000 public patient gene expression datasets from ~140 diseases were evaluated against cenerimod gene expression data generated in mouse disease models. To improve comparability of studies across platforms and species, computer algorithms (neural networks) were trained and employed to reduce noise within the data sets and improve signal. The predicted response to cenerimod for individual patients was contrasted against clinical patient characteristics.Results:The neural network algorithm efficiently reduced experimental noise and improved sensitivity in the gene expression data. The results predicted cenerimod to be efficacious in several auto-immune diseases foremost SLE. Additionally, focused analysis on individual patients rather than disease cohorts revealed potential determinants predictive of maximal clinical response, with the highest predicted clinical response for cenerimod in patients with severe inflammatory endotype and/or high SLE Disease Activity Index (SLEDAI).Conclusion:Combining preclinical compound data with the wealth of public disease gene expression data, provides great potential to support indication selection. The novel in silico framework identified SLE as a prime potential indication for cenerimod and supported the cenerimod phase 2b clinical trial in patients with SLE (CARE study,NCT03742037).References:[1]Piali, L., Birker-Robaczewska, M., Lescop, C., Froidevaux, S., Schmitz, N., Morrison, K., … Nayler, O. (2017). Cenerimod, a novel selective S1P1 receptor modulator with unique signaling properties. Pharmacology Research & Perspectives, 5(6), 1–12.https://doi.org/10.1002/prp2.370Disclosure of Interests:Dominik Hartl Shareholder of: Idorsia shares, Employee of: Idorsia employee, Marcel Keller Shareholder of: Idorsia options/shares, Employee of: Idorsia employee, Axel Klenk Shareholder of: Idorsia option/shares, Employee of: Idorsia employee, Mark Murphy Shareholder of: Idorsia shares and stock options, Employee of: Idorsia employee, Marianne Martinic Shareholder of: Idorsia options/shares, Employee of: Idorsia employee, Gabin Pierlot Shareholder of: Idorsia options/shares, Employee of: Idorsia employee, Peter Groenen Shareholder of: Idorsia options/shares, Employee of: Idorsia employee, Daniel Strasser Shareholder of: Idorsia options/shares, Employee of: Idorsia employee

2015 ◽  
Vol 11 (1) ◽  
pp. 86-96 ◽  
Author(s):  
Aakash Chavan Ravindranath ◽  
Nolen Perualila-Tan ◽  
Adetayo Kasim ◽  
Georgios Drakakis ◽  
Sonia Liggi ◽  
...  

Integrating gene expression profiles with certain proteins can improve our understanding of the fundamental mechanisms in protein–ligand binding.


2020 ◽  
Vol 127 ◽  
pp. 124-135
Author(s):  
George D. Vavougios ◽  
Christiane Nday ◽  
Sygliti-Henrietta Pelidou ◽  
Sotirios G. Zarogiannis ◽  
Konstantinos I. Gourgoulianis ◽  
...  

2021 ◽  
Author(s):  
Magdalena Navarro ◽  
T Ian Simpson

AbstractMotivationAutism spectrum disorder (ASD) has a strong, yet heterogeneous, genetic component. Among the various methods that are being developed to help reveal the underlying molecular aetiology of the disease, one that is gaining popularity is the combination of gene expression and clinical genetic data. For ASD, the SFARI-gene database comprises lists of curated genes in which presumed causative mutations have been identified in patients. In order to predict novel candidate SFARI-genes we built classification models combining differential gene expression data for ASD patients and unaffected individuals with a gene’s status in the SFARI-gene list.ResultsSFARI-genes were not found to be significantly associated with differential gene expression patterns, nor were they enriched in gene co-expression network modules that had a strong correlation with ASD diagnosis. However, network analysis and machine learning models that incorporate information from the whole gene co-expression network were able to predict novel candidate genes that share features of existing SFARI genes and have support for roles in ASD in the literature. We found a statistically significant bias related to the absolute level of gene expression for existing SFARI genes and their scores. It is essential that this bias be taken into account when studies interpret ASD gene expression data at gene, module and whole-network levels.AvailabilitySource code is available from GitHub (https://doi.org/10.5281/zenodo.4463693) and the accompanying data from The University of Edinburgh DataStore (https://doi.org/10.7488/ds/2980)[email protected]


RSC Advances ◽  
2016 ◽  
Vol 6 (100) ◽  
pp. 98080-98090 ◽  
Author(s):  
Hongbo Xie ◽  
Haixia Wen ◽  
Mingze Qin ◽  
Jie Xia ◽  
Denan Zhang ◽  
...  

We provided a computational drug repositioning method for the treatment of Alzheimer's disease.


2020 ◽  
pp. annrheumdis-2020-218344 ◽  
Author(s):  
Jamie Soul ◽  
Matthew J Barter ◽  
Christopher B Little ◽  
David A Young

ObjectivesTo collate the genes experimentally modulated in animal models of osteoarthritis (OA) and compare these data with OA transcriptomics data to identify potential therapeutic targets.MethodsPubMed searches were conducted to identify publications describing gene modulations in animal models. Analysed gene expression data were retrieved from the SkeletalVis database of analysed skeletal microarray and RNA-Seq expression data. A network diffusion approach was used to predict new genes associated with OA joint damage.ResultsA total of 459 genes were identified as having been modulated in animal models of OA, with ageing and post-traumatic (surgical) models the most prominent. Ninety-eight of the 143 genes (69%) genetically modulated more than once had a consistent effect on OA joint damage severity. Several discrepancies between different studies were identified, providing lessons on interpretation of these data. We used the data collected along with OA gene expression data to expand existing annotations and prioritise the most promising therapeutic targets, which we validated using the latest reported associations. We constructed an online database OATargets to allow researchers to explore the collated data and integrate it with existing OA and skeletal gene expression data.ConclusionsWe present a comprehensive survey and online resource for understanding gene regulation of animal model OA pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document