Faculty Opinions recommendation of Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data.

Author(s):  
Laura Haneline
2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 216.2-217
Author(s):  
D. Hartl ◽  
M. Keller ◽  
A. Klenk ◽  
M. Murphy ◽  
M. Martinic ◽  
...  

Background:To explore the full therapeutic spectrum of a drug it is crucial to consider its potential effectiveness in all diseases. Serendipitous clinical observations have often shown that approved drugs and those in development to be efficacious in indications different to those originally tested for. Traditional approaches to match a drug candidate with possible indications are mostly based on matching drug mechanistic knowledge with disease pathophysiology. Proof-of-concept trials or elaborate pre-clinical studies in animal models do not allow for a broad assessment due to high costs and slow progress. Gene expression changes in patients or animal models represent a good proxy to comprehensively assess both disease and drug effects. Furthermore, this data type can be integrated with a plethora of publicly available data.Objectives:Generation of a novel in silico framework to support the selection and expansion of potential indications which associate with a compound or approved drug. The framework was exemplified by the clinical compound cenerimod, a potent, selective, and orally active sphingosine-1-phosphate receptor 1 modulator (Piali et al., 2017).Methods:A total of ~13’000 public patient gene expression datasets from ~140 diseases were evaluated against cenerimod gene expression data generated in mouse disease models. To improve comparability of studies across platforms and species, computer algorithms (neural networks) were trained and employed to reduce noise within the data sets and improve signal. The predicted response to cenerimod for individual patients was contrasted against clinical patient characteristics.Results:The neural network algorithm efficiently reduced experimental noise and improved sensitivity in the gene expression data. The results predicted cenerimod to be efficacious in several auto-immune diseases foremost SLE. Additionally, focused analysis on individual patients rather than disease cohorts revealed potential determinants predictive of maximal clinical response, with the highest predicted clinical response for cenerimod in patients with severe inflammatory endotype and/or high SLE Disease Activity Index (SLEDAI).Conclusion:Combining preclinical compound data with the wealth of public disease gene expression data, provides great potential to support indication selection. The novel in silico framework identified SLE as a prime potential indication for cenerimod and supported the cenerimod phase 2b clinical trial in patients with SLE (CARE study,NCT03742037).References:[1]Piali, L., Birker-Robaczewska, M., Lescop, C., Froidevaux, S., Schmitz, N., Morrison, K., … Nayler, O. (2017). Cenerimod, a novel selective S1P1 receptor modulator with unique signaling properties. Pharmacology Research & Perspectives, 5(6), 1–12.https://doi.org/10.1002/prp2.370Disclosure of Interests:Dominik Hartl Shareholder of: Idorsia shares, Employee of: Idorsia employee, Marcel Keller Shareholder of: Idorsia options/shares, Employee of: Idorsia employee, Axel Klenk Shareholder of: Idorsia option/shares, Employee of: Idorsia employee, Mark Murphy Shareholder of: Idorsia shares and stock options, Employee of: Idorsia employee, Marianne Martinic Shareholder of: Idorsia options/shares, Employee of: Idorsia employee, Gabin Pierlot Shareholder of: Idorsia options/shares, Employee of: Idorsia employee, Peter Groenen Shareholder of: Idorsia options/shares, Employee of: Idorsia employee, Daniel Strasser Shareholder of: Idorsia options/shares, Employee of: Idorsia employee


2015 ◽  
Vol 11 (1) ◽  
pp. 86-96 ◽  
Author(s):  
Aakash Chavan Ravindranath ◽  
Nolen Perualila-Tan ◽  
Adetayo Kasim ◽  
Georgios Drakakis ◽  
Sonia Liggi ◽  
...  

Integrating gene expression profiles with certain proteins can improve our understanding of the fundamental mechanisms in protein–ligand binding.


2015 ◽  
Vol 47 (6) ◽  
pp. 232-239 ◽  
Author(s):  
Gustav Holmgren ◽  
Nidal Ghosheh ◽  
Xianmin Zeng ◽  
Yalda Bogestål ◽  
Peter Sartipy ◽  
...  

Reference genes, often referred to as housekeeping genes (HKGs), are frequently used to normalize gene expression data based on the assumption that they are expressed at a constant level in the cells. However, several studies have shown that there may be a large variability in the gene expression levels of HKGs in various cell types. In a previous study, employing human embryonic stem cells (hESCs) subjected to spontaneous differentiation, we observed that the expression of commonly used HKG varied to a degree that rendered them inappropriate to use as reference genes under those experimental settings. Here we present a substantially extended study of the HKG signature in human pluripotent stem cells (hPSC), including nine global gene expression datasets from both hESC and human induced pluripotent stem cells, obtained during directed differentiation toward endoderm-, mesoderm-, and ectoderm derivatives. Sets of stably expressed genes were compiled, and a handful of genes (e.g., EID2, ZNF324B, CAPN10, and RABEP2) were identified as generally applicable reference genes in hPSCs across all cell lines and experimental conditions. The stability in gene expression profiles was confirmed by reverse transcription quantitative PCR analysis. Taken together, the current results suggest that differentiating hPSCs have a distinct HKG signature, which in some aspects is different from somatic cell types, and underscore the necessity to validate the stability of reference genes under the actual experimental setup used. In addition, the novel putative HKGs identified in this study can preferentially be used for normalization of gene expression data obtained from differentiating hPSCs.


2020 ◽  
Vol 127 ◽  
pp. 124-135
Author(s):  
George D. Vavougios ◽  
Christiane Nday ◽  
Sygliti-Henrietta Pelidou ◽  
Sotirios G. Zarogiannis ◽  
Konstantinos I. Gourgoulianis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document