scholarly journals Lyp/PTPN22 is a negative regulator of integrin mediated T cell adhesion and migration; the disease associated PTPN22 allelic variant is a loss of function mutant that perturbs T cell migration

2011 ◽  
Vol 70 (Suppl 2) ◽  
pp. A7-A7 ◽  
Author(s):  
L. Svensson ◽  
G. Burn ◽  
C. Sanchez-Blanco ◽  
R. Zamoyska ◽  
A. Cope
2002 ◽  
Vol 302 (1) ◽  
pp. 290-295 ◽  
Author(s):  
Kent W. Christopherson ◽  
James J. Campbell ◽  
Jeffrey B. Travers ◽  
Robert A. Hromas

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e61761 ◽  
Author(s):  
Yun-Jung Chiang ◽  
Kun-Chin Ho ◽  
Chien-Tsang Sun ◽  
Jeng-Jiann Chiu ◽  
Fang-Jen Lee ◽  
...  

2008 ◽  
Vol 181 (9) ◽  
pp. 6109-6116 ◽  
Author(s):  
Biliana Lozanoska-Ochser ◽  
Nigel J. Klein ◽  
Guo C. Huang ◽  
Raymond A. Alvarez ◽  
Mark Peakman

Blood ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 2228-2239 ◽  
Author(s):  
P Sanchez-Mateos ◽  
MR Campanero ◽  
MA del Pozo ◽  
F Sanchez-Madrid

CD43 is a cell surface-associated mucin that is abundantly expressed by most leukocytes, and that appears to function as a negative regulator of cell surface interactions, providing a repulsive barrier around cells. We have analyzed herein the ability of anti-CD43 monoclonal antibody (MoAb) to upregulate both beta 1 and beta 2 integrin-mediated cell adhesion and to promote redistribution of the CD43 molecule into a cellular uropod. Engagement of CD43 with specific antibodies enhanced the cell adhesion to both 80- and 38-kD fibronectin fragments as well as to the endothelial cell ligands vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, an effect that was mediated through the alpha 5 beta 1, alpha 4 beta 1, and alpha L beta 2 integrins, respectively. This effect on cell adhesion was achieved in Jurkat leukemic T cells by anti-CD43 MoAb alone; however, in T lymphoblasts, the activation of cell adhesion required the concomitant ligation of CD3 with suboptimal doses of anti-CD3 MoAb. Immunofluorescence analysis showed that the engagement of CD43 was accompanied by a differential redistribution of CD43 into a well- defined cytoplasmic projection or uropod, whereas the beta 1 or beta 2 integrins remained uniformly located on the contact area with substrata. This change in the localization of CD43 did not require costimulation and was induced directly by engagement of CD43 in T lymphoblasts. Other stimuli of cell adhesion in the form of cross- linked anti-CD3 MoAb or phorbol esters did not induce uropod formation or CD43 redistribution. In addition, we observed that prolonged co- culture of resting peripheral blood T lymphocytes with endothelial cells, in the absence of anti-CD43 MoAb, induced uropod formation and redistribution of CD43 in T cells. Interestingly, the myosin-disrupting drug butanedione monoxime inhibited the redistribution of CD43 induced by the specific MoAb, whereas the stimulation of cell adhesion induced by engagement of CD43 was preserved in the presence of this drug. These observations indicate that the signaling inducing integrin-mediated cell adhesion by CD43 takes place independently from the receptor redistribution. Altogether, these results indicate that CD43 has a regulatory role on both integrin-mediated T-cell adhesion and cellular morphology.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257495
Author(s):  
Janine Riegert ◽  
Alexander Töpel ◽  
Jana Schieren ◽  
Renee Coryn ◽  
Stella Dibenedetto ◽  
...  

Biomaterial-driven modulation of cell adhesion and migration is a challenging aspect of tissue engineering. Here, we investigated the impact of surface-bound microgel arrays with variable geometry and adjustable cross-linking properties on cell adhesion and migration. We show that cell migration is inversely correlated with microgel array spacing, whereas directionality increases as array spacing increases. Focal adhesion dynamics is also modulated by microgel topography resulting in less dynamic focal adhesions on surface-bound microgels. Microgels also modulate the motility and adhesion of Sertoli cells used as a model for cell migration and adhesion. Both focal adhesion dynamics and speed are reduced on microgels. Interestingly, Gas2L1, a component of the cytoskeleton that mediates the interaction between microtubules and microfilaments, is dispensable for the regulation of cell adhesion and migration on microgels. Finally, increasing microgel cross-linking causes a clear reduction of focal adhesion turnover in Sertoli cells. These findings not only show that spacing and rigidity of surface-grafted microgels arrays can be effectively used to modulate cell adhesion and motility of diverse cellular systems, but they also form the basis for future developments in the fields of medicine and tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document