scholarly journals Driving restrictions following deep brain stimulation surgery

2021 ◽  
Vol 3 (2) ◽  
pp. e000210
Author(s):  
Andrew Roy Charmley ◽  
Thomas Kimber ◽  
Neil Mahant ◽  
Alexander Lehn

BackgroundThere are currently no Australian guidelines to assist clinicians performing deep brain stimulation (DBS) procedures in setting postoperative driving restrictions.PurposeWe aimed to provide recommendations for post-DBS driving restrictions to guide practice in Australia.MethodsA review of current Australian and international driving guidelines, literature regarding the adverse effects of DBS and literature regarding the long-term effect of neurostimulation on driving was conducted using Elton B Stephens Company discovery service-linked databases. Australian neurologists and neurosurgeons who perform DBS were surveyed to gain insight into existing practice.ResultsNo guidance on driving restrictions following DBS surgery was found, either in existing driving guidelines or in the literature. There was a wide difference seen in the rates of reported adverse effects from DBS surgery. The most serious adverse events (haemorrhage, seizure and neurological dysfunction) were uncommon. Longer term, there does not appear to be any adverse effect of DBS on driving ability. Survey of Australian practitioners revealed a universal acceptance of the need for and use of driving restrictions after DBS but significant heterogeneity in how return to driving is managed.ConclusionWe propose a 6-week driving restriction for private licences and 6-month driving restriction for commercial licences in uncomplicated DBS. We also highlight some of the potential pitfalls and pearls to assist clinicians to modify these recommendations where needed. Ultimately, we hope this will stimulate further examination of this issue in research and by regulatory bodies to provide more robust direction for practitioners performing DBS implantation.

2004 ◽  
Vol 10 (3) ◽  
pp. 189-199 ◽  
Author(s):  
David Christmas ◽  
Colin Morrison ◽  
Muftah S. Eljamel ◽  
Keith Matthews

The authors review contemporary indications for neurosurgical interventions in the management of chronic and refractory mental disorder, the procedures involved, their efficacy and known adverse effects. These data are presented within the context of a brief historical overview of the use of neurosurgery for mental disorder. In addition to a consideration of neurosurgical procedures that rely on the creation of putative therapeutic lesions, we also review two novel, non-destructive neurosurgical electrostimulation treatments that may represent viable alternatives to conventional ablative neurosurgery: vagus nerve stimulation and deep brain stimulation.


Author(s):  
Azari H ◽  

Background: Deep Brain Stimulation (DBS) is regarded as a viable therapeutic choice for Parkinson’s Disease (PD). The two most common sites for DBS are the Subthalamic Nucleus (STN) and Globus Pallidus (GPi). In this study, the clinical effectiveness of these two targets was compared. Methods: A systematic literature search in electronic databases were restricted to English language publications 2010 to 2021. Specified MeSH terms were searched in all databases. Studies that evaluated the Unified Parkinson’s Disease Rating Scale (UPDRS) III were selected by meeting the following criteria: (1) had at least three months follow-up period; (2) compared both GPi and STN DBS; (3) at least five participants in each group; (4) conducted after 2010. Study quality assessment was performed using the Modified Jadad Scale. Results: 3577 potentially relevant articles were identified 3569 were excluded based on title and abstract, duplicate and unsuitable article removal. Eight articles satisfied the inclusion criteria and were scrutinized (458 PD patients). Majority of studies reported no statistically significant between-group difference for improvements in UPDRS III scores. Conclusions: Although there were some results in terms of action tremor, rigidity, and urinary symptoms, which indicated that STN DBS might be a better choice or regarding the adverse effects, GPi seemed better; but it cannot be concluded that one target is superior. Other larger randomized clinical trials with longer follow-up periods and control groups are needed to decide which target is more efficient for stimulation and imposes fewer adverse effects on the patients.


2018 ◽  
Vol 117 ◽  
pp. 280-283 ◽  
Author(s):  
Rongsong Zhou ◽  
Yu Ma ◽  
Wei Liu ◽  
Suhua Miao ◽  
Yuqi Zhang

2017 ◽  
Vol 42 (videosuppl2) ◽  
pp. Intro ◽  
Author(s):  
Andres M. Lozano ◽  
Robert E. Gross

It is estimated that over 160,000 patients worldwide have received deep brain stimulation (DBS) to date predominantly for Parkinson's disease and other movement disorders. With the success of this therapy, a greater appreciation of the clinical benefits and adverse effects is being realized. Neurosurgeons are increasingly paying attention to the technical details of these procedures and optimizing targeting, surgical techniques, and programming to improve outcomes.In this issue, the nuances of surgical techniques for DBS are covered by Dr. House. Dr. Toda et al. and Mr. Chartrain et al. tackle the approach to treating tremors, either essential tremor or Holmes tremor, using either a single target or, in cases of difficult-to-treat tremors, using more than one target and interleaving the stimulation. These abstracts and videos will be appreciated by both those who are being initiated to DBS and the more seasoned practitioners who are looking for helpful hints to tackle challenging cases.


2021 ◽  
Author(s):  
Hushyar Azari

Abstract Background: Deep brain stimulation (DBS) is regarded as a viable therapeutic choice for Parkinson's disease (PD). The two most common sites for DBS are the subthalamic nucleus (STN) and globus pallidus (GPi). In this study, the clinical effectiveness of these two targets was compared.Methods: A systematic literature search in electronic databases were restricted to English language publications 2010 to 2021. Specified MeSH terms were searched in all databases. Studies that evaluated the Unified Parkinson's Disease Rating Scale (UPDRS) III were selected by meeting the following criteria: (1) had at least three months follow-up period; (2) compared both GPi and STN DBS; (3)at least five participants in each group; (4)conducted after 2010. Study quality assessment was performed using the Modified Jadad Scale.Results: 3577 potentially relevant articles were identified,3569 were excluded based on title and abstract, duplicate and unsuitable article removal. Eight articles satisfied the inclusion criteria and were scrutinized (458 PD patients). Majority of studies reported no statistically significant between-group difference for improvements in UPDRS ш scores.Conclusions: Although there were some results in terms of action tremor, rigidity, and urinary symptoms, which indicated that STN DBS might be a better choice or regarding the adverse effects, GPi seemed better; but it cannot be concluded that one target is superior. Other larger randomized clinical trials with longer follow-up periods and control groups are needed to decide which target is more efficient for stimulation and imposes fewer adverse effects on the patients.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Irene E Harmsen ◽  
Darrin J Lee ◽  
Robert F Dallapiazza ◽  
Philippe De Vloo ◽  
Robert Chen ◽  
...  

Abstract INTRODUCTION Stimulation frequency has been considered a crucial determinant of efficacy in deep brain stimulation (DBS). DBS at frequencies over 250 Hz is not currently employed and consensus in the field suggests that higher frequencies are not clinically effective. With the recent demonstration of clinically effective ultrahigh frequency (UHF) spinal cord stimulation at 10 kHz we tested whether UHF stimulation could also be clinically useful in movement disorder patients with DBS. We evaluated the clinical effects and safety of UHF DBS in patients with subthalamic nucleus (STN) or ventral intermediate thalamic nucleus (VIM) DBS. METHODS We studied the effects of conventional (130 Hz) and UHF stimulation in 5 patients with Parkinson's disease (PD) with STN DBS and in one patient with essential tremor (ET) with VIM DBS. We compared the clinical benefit and adverse effects of stimulation at various amplitudes either intraoperatively or postoperatively with the electrodes externalized. RESULTS Motor performance improved in all 6 patients with UHF DBS. About 10 kHz stimulation at amplitudes = 3.0 mA appeared to be as effective as 130 Hz in improving motor symptoms (46.2% vs 53.5% motor score reduction, P = .110, N = 90 trials). Interestingly, 10 kHz stimulation resulted in fewer stimulation-induced paresthesiae and speech adverse effects than 130 Hz stimulation. CONCLUSION Our results indicate that DBS at 10 kHz produces clinical benefits in patients with movement disorders. Like 10 kHz spinal cord stimulation, 10 kHz DBS has the potential to produce clinical benefits while possibly reducing stimulation-induced adverse effects. Further studies will be required to optimize UHF DBS stimulation parameters and to determine its clinical utility.


2019 ◽  
Vol 24 (4) ◽  
pp. 442-450 ◽  
Author(s):  
Jetan H. Badhiwala ◽  
Brij Karmur ◽  
Lior M. Elkaim ◽  
Naif M. Alotaibi ◽  
Benjamin R. Morgan ◽  
...  

OBJECTIVEAlthough deep brain stimulation (DBS) is an accepted treatment for childhood dystonia, there is significant heterogeneity in treatment response and few data are available to identify ideal surgical candidates.METHODSData were derived from a systematic review and individual patient data meta-analysis of DBS for dystonia in children that was previously published. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale for movement (BFMDRS-M) and for disability (BFMDRS-D). The authors used partial least squares, bootstrapping, and permutation statistics to extract patterns of contributions of specific preoperative characteristics to relationship with distinct outcomes, in all patients and in patients with primary and secondary dystonia separately.RESULTSOf 301 children undergoing DBS for dystonia, 167 had primary dystonia, 125 secondary dystonia, and 9 myoclonus dystonia. Three dissociable preoperative phenotypes (latent variables) were identified and associated with the following: 1) BFMDRS-M at last follow-up; 2) relative change in BFMDRS-M score; and 3) relative change in BFMDRS-D score. The phenotype of patients with secondary dystonia, with a high BFMDRS-M score and truncal involvement, undergoing DBS at a younger age, was associated with a worse postoperative BFMDRS-M score. Children with primary dystonia involving the trunk had greater improvement in BFMDRS-M and -D scores. Those with primary dystonia of shorter duration and proportion of life with disease, undergoing globus pallidus DBS, had greater improvements in BFMDRS-D scores at long-term follow-up.CONCLUSIONSIn a comprehensive, data-driven, multivariate analysis of DBS for childhood dystonia, the authors identified novel and dissociable patient phenotypes associated with distinct outcomes. The findings of this report may inform surgical candidacy for DBS.


Sign in / Sign up

Export Citation Format

Share Document