scholarly journals Costs of switching to low global warming potential inhalers. An economic and carbon footprint analysis of NHS prescription data in England

BMJ Open ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. e028763 ◽  
Author(s):  
Alexander J K Wilkinson ◽  
Rory Braggins ◽  
Ingeborg Steinbach ◽  
James Smith

ObjectivesMetered-dose inhalers (MDIs) contain propellants which are potent greenhouse gases. Many agencies propose a switch to alternative, low global warming potential (GWP) inhalers, such as dry powder inhalers (DPIs). We aimed to analyse the impact on greenhouse gas emissions and drug costs of making this switch.SettingWe studied National Health Service prescription data from England in 2017 and collated carbon footprint data on inhalers commonly used in England.DesignInhalers were separated into different categories according to their mechanisms of action (eg, short-acting beta-agonist). Within each category we identified low and high GWP inhalers and calculated the cost and carbon impact of changing to low GWP inhalers. We modelled scenarios for swapping proportionally according to the current market share of each equivalent DPI (model 1) and switching to the lowest cost pharmaceutically equivalent DPI (model 2). We also reviewed available data on the carbon footprint of inhalers from scientific publications, independently certified reports and patents to provide more accurate carbon footprint information on different types of inhalers.ResultsIf MDIs using HFA propellant are replaced with the cheapest equivalent DPI, then for every 10% of MDIs changed to DPIs, drug costs decrease by £8.2M annually. However if the brands of DPIs stay the same as 2017 prescribing patterns, for every 10% of MDIs changed to DPIs, drug costs increase by £12.7M annually. Most potential savings are due to less expensive long-acting beta-agonist (LABA)/inhaled corticosteroids (ICS) inhalers. Some reliever inhalers (eg, Ventolin) have a carbon footprint over 25 kg CO2e per inhaler, while others use far less 1,1,1,2-tetrafluoroethane (HFA134a) (eg, Salamol) with a carbon footprint of <10 kg CO2e per inhaler. 1,1,1,2,3,3,3-Heptafluoropropane (HFA227ea) LABA/ICS inhalers (eg, Flutiform) have a carbon footprint over 36 kg CO2e, compared with an equivalent HFA134a combination inhaler (eg, Fostair) at <20 kg CO2e. For every 10% of MDIs changed to DPIs, 58 kt CO2e could be saved annually in England.ConclusionsSwitching to DPIs would result in large carbon savings and can be achieved alongside reduced drug costs by using less expensive brands. Substantial carbon savings can be made by using small volume HFA134a MDIs, in preference to large volume HFA134a MDIs, or those containing HFA227ea as a propellant.

2014 ◽  
Vol 1 (1) ◽  
pp. 417-420
Author(s):  
Lucian-Ionel Cioca ◽  
Maria-Viorela Codoi

AbstractCarbon foot printing became an important term for surprisingly many people in the last years. It is very important that people learn what effects may have carbon foot printing on their lifes and how it’s produced. The term “carbon foot printing” is just a name which is the result of global warming potential. Carbon foot printing is considered a very popular buzzword in Romania in the last year. The carbon footprint measures total greenhouse gas emissions caused directly and indirectly, by a person, organization, event or product. In Romania the carbon emissions are the consequences of burning of fossil fuels and manufacturing of cement, and the value of CO2 emissions in 2008 was 94,660(kt). People can do training or courses to learn more about the meaning of carbon footprints, their impact on the environment and calculation of the carbon footprint by measuring the CO2 equivalent emissions.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012015
Author(s):  
J Budajová

Abstract In general, we can call the carbon footprint as emissions of gases that affect the Earth’s climate, while being used by humans. The impact of construction, building materials, structures, or the overall life cycle of a building on the environment is great. Sustainable architecture is gaining more prominence, using reduced carbon footprint. Today’s construction industry is increasingly moving towards sustainable construction, which is constantly being formed. The great weather fluctuations that take place from day to day are forcing us to reduce our greenhouse gas emissions. The global warming potential GWP (global warming potential) caused by these greenhouse gas emissions is increased to carbon dioxide CO2 and expressed as carbon dioxide equivalent CO2eq. Using GWP we can determine the carbon footprint of a product. The aim of this paper is to change the three compositions of the perimeter walls using LCA analysis (life cycle assessment) and to choose the composition that has the best carbon footprint and is therefore more advantageous. The need for a sustainable built environment is urgent due to its positive impact on the environment.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 946
Author(s):  
Bartosz Gil ◽  
Anna Szczepanowska ◽  
Sabina Rosiek

In this work, which is related to the current European Parliament Regulation on restrictions affecting refrigeration, four new three-component refrigerants have been proposed; all were created using low Global Warming Potential(GWP) synthetic and natural refrigerants. The considered mixtures consisted of R32, R41, R161, R152a, R1234ze (E), R1234yf, R1243zf, and RE170. These mixtures were theoretically tested with a 10% step in mass fraction using a triangular design. The analysis covered two theoretical cooling cycles at evaporating temperatures of 0 and −30 °C, and a 30 °C constant condensing temperature. The final stage of the work was the determination of the best mixture compositions by thermodynamic and operational parameters. R1234yf–R152a–RE170 with a weight share of 0.1/0.5/0.4 was determined to be the optimal mixture for potentially replacing the existing refrigerants.


2021 ◽  
pp. 45-45
Author(s):  
Zhaofeng Meng ◽  
Yin Liu ◽  
Dingbiao Wang ◽  
Long Gao ◽  
Junhai Yan

Refrigerants with low global warming potential (GWP) are much needed in automotive air conditioning systems. This paper compares two refrigerants, R134a (GWP=1300) and R513A (GWP=573) experimentally. The results show that the latter has lower cooling capacity, lower COP and lower discharge temperature than the former, revealing that R513A is a promising replacement of its high GWP partner.


2007 ◽  
Vol 4 (2) ◽  
pp. 1059-1092 ◽  
Author(s):  
S. Lehuger ◽  
B. Gabrielle ◽  
E. Larmanou ◽  
P. Laville ◽  
P. Cellier ◽  
...  

Abstract. Nitrous oxide, carbon dioxide and methane are the main biogenic greenhouse gases (GHG) contributing to the global warming potential (GWP) of agro-ecosystems. Evaluating the impact of agriculture on climate thus requires a capacity to predict the net exchanges of these gases in an integrated manner, as related to environmental conditions and crop management. Here, we used two year-round data sets from two intensively-monitored cropping systems in northern France to test the ability of the biophysical crop model CERES-EGC to simulate GHG exchanges at the plot-scale. The experiments involved maize and rapeseed crops on a loam and rendzina soils, respectively. The model was subsequently extrapolated to predict CO2 and N2O fluxes over an entire crop rotation. Indirect emissions (IE) arising from the production of agricultural inputs and from cropping operations were also added to the final GWP. One experimental site (involving a wheat-maize-barley rotation on a loamy soil) was a net source of GHG with a GWP of 350 kg CO2-C eq ha−1 yr−1, of which 75% were due to IE and 25% to direct N2O emissions. The other site (involving an oilseed rape-wheat-barley rotation on a rendzina) was a net sink of GHG for –250 kg CO2-C eq ha−1 yr−1, mainly due to a higher predicted C sequestration potential and C return from crops. Such modelling approach makes it possible to test various agronomic management scenarios, in order to design productive agro-ecosystems with low global warming impact.


Sign in / Sign up

Export Citation Format

Share Document