Experimental study on diffusion absorption refrigerator achieving 0.2 coefficient of performance using low global warming potential refrigerant and low-grade heat source

Author(s):  
Hyung Won Choi ◽  
Jae Won Lee ◽  
Yong Tae Kang
Author(s):  
H. M. Elgohary ◽  
H. M. Soliman ◽  
A. M. Soliman ◽  
H. H. Gouda ◽  
S.P. Chowdhury

Author(s):  
Rabah Touaibi ◽  
Hasan Koten

An energy analysis study carried out on a vapor compression refrigeration cycle using refrigerants with low global warming potential (GWP) of the Hydro-Fluoro-Olefin (HFO) type, in particular R1234yf and R1234ze fluids to replace HFC refrigerants . Computer code was developed using software for solving engineering equations to calculate performance parameters; for this, three HFC type fluids (R134a, R404A and R410A) were selected for a comparative study. The results showed that R1234ze is the best refrigerant among those selected for the mechanical vapor compression refrigeration cycle. The thermodynamic analysis showed the effect of the evaporator temperature (-22 °C to 10 °C) and the condenser temperature (30 °C to 50 °C) on the steam cycle performance. Compression refrigeration, including the coefficient of performance. The results showed that the HFO-R1234ze with low GWP gives the best coefficient of performance of 3.14 close to that of the R134a fluid (3.17). In addition, R1234ze is considered an alternative fluid to R134a for their ecological properties.


2013 ◽  
Vol 315 ◽  
pp. 380-384
Author(s):  
Khairul Habib

This article presents a transient modeling and performance of a waste heat driven pressurized adsorption chiller. This innovative adsorption chiller employs pitch based activated carbon of type Maxsorb III as adsorbent and R507A as refrigerant as adsorbent-refrigerant pair. This chiller utilizes low-grade heat source to power the cycle. A parametric study has been presented where the effects of adsorption/desorption cycle time, switching time and regeneration temperature on the performance are reported in terms of cooling capacity and coefficient of performance (COP). Results indicate that the adsorption chiller is feasible even when low-temperature heat source is available.


Author(s):  
Shikuan Wang ◽  
Zhikai Guo ◽  
Xiaohong Han ◽  
Xiangguo Xu ◽  
Qin Wang ◽  
...  

HFO-1336mzz-Z with low global warming potential (GWP) was considered as a promising alternative of HCFC-123, HFC-245fa in air conditioning (AC) and heat pump (HP), respectively. In order to understand the operation performances of HFO-1336mzz-Z and HCFC-123, HFC-245fa in different working conditions, an experimental setup for testing the refrigeration cycle performance was built. The cycle performances of HFO-1336mzz-Z and HCFC-123 in AC conditions, HFO-1336mzz-Z and HFC-245fa in HP conditions were investigated by experiment. It was found in AC conditions, the discharge temperatures for the systems with HFO-1336mzz-Z and HCFC-123 were lower than 115 °C, the cooling capacity of the system with HFO-1336mzz-Z was 27% less than that with HCFC-123 at least, and the coefficient of performance (COP) of the system with HFO-1336mzz-Z was 0.1 lower than that with HCFC-123; in HP conditions, the discharge temperature with HFO-1336mzz-Z was lower than that with HFC-245fa, the former was never over 115 °C while the latter was up to 126 °C, the power input to the compressor with HFO-1336mzz-Z was 20% less than that with HFC-245fa in the same HP conditions, the heating capacity of the system with HFO-1336mzz-Z was 30–40% less than that with HFC-245fa.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 946
Author(s):  
Bartosz Gil ◽  
Anna Szczepanowska ◽  
Sabina Rosiek

In this work, which is related to the current European Parliament Regulation on restrictions affecting refrigeration, four new three-component refrigerants have been proposed; all were created using low Global Warming Potential(GWP) synthetic and natural refrigerants. The considered mixtures consisted of R32, R41, R161, R152a, R1234ze (E), R1234yf, R1243zf, and RE170. These mixtures were theoretically tested with a 10% step in mass fraction using a triangular design. The analysis covered two theoretical cooling cycles at evaporating temperatures of 0 and −30 °C, and a 30 °C constant condensing temperature. The final stage of the work was the determination of the best mixture compositions by thermodynamic and operational parameters. R1234yf–R152a–RE170 with a weight share of 0.1/0.5/0.4 was determined to be the optimal mixture for potentially replacing the existing refrigerants.


Sign in / Sign up

Export Citation Format

Share Document