scholarly journals Magnetic resonance imaging as the primary imaging modality in children presenting with acute non-traumatic hip pain

2001 ◽  
Vol 18 (1) ◽  
pp. 25-29 ◽  
Author(s):  
P M White
QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Abeer Abd El Maksoud Hafez ◽  
Tarek Wahby Hameda ◽  
Ghadier Ibrahim Attia

Abstract Background Magnetic resonance is the best imaging modality to assess hip joint in non-traumatic cases. It has a great ability to diagnose disorders of bone, cartilage, ligaments, muscles and soft tissue. MRI can also detect joint effusion and bone marrow edema. Aim of the Work: To assess the value of MRI as the imaging modality in children presenting with acute non-traumatic hip pain and its ability to assess the cause of the pain early without the use of another imaging modality. Patients and Methods A retrospective study was conducted on pediatric patients with non-traumatic hip pain, referred from the outpatient pediatric clinic, orthopedic clinic, Ain Shams University hospitals. The patients were investigated using magnetic resonance imaging (MRI) for detection the cause of non-traumatic hip pain. Results In this study we found that avascular necrosis is the commonest cause of non-traumatic hip pain followed by isolated hip effusion then synovitis. Other causes included perthes, septic arthritis, osteomyelitis, aneurysmal bone cyst, SCFE, PFFD and Osteomalacia. Magnetic resonance imaging doesn’t only demonstrate disorders of hip joint only; it also gives an accurate assessment of other extra-articular causes of referred hip pain. Conclusion Hip MRI is a practical, well accepted and accurate non-invasive imaging technique in children presenting with acute non-traumatic hip pain.


2018 ◽  
Vol 5 (6) ◽  
pp. 1352
Author(s):  
Johny Prasad Bollipo ◽  
Pasupuleti Bhimeswara Rao

Background: Magnetic Resonance Imaging (MRI) is a well-established imaging technique, which are available at most larger hospitals today. Due to the combination of this high contrast and the fact that it is a non-ionizing radiation, MRI is often used for investigation of a large range of pathologies in almost all parts of the body. This study was performed to describe the MRI features in various types of lesions causing painful hip joint, as well as identify the common lesions seen in painful hip joint and to analyse the severity and extent of the underlying lesion in various conditions of hip joint pain, and early detection of pathological changes helpful to prognosticate and influence therapeutic decisions.Methods: This descriptive study was done on 50 patients with complaints of hip joint pain were included into the study. Appropriate MRI sequences and multi-planar imaging performed for every patient.Results: Out of the 50 patients included in the study, 74% of them were males who were predominantly affected with hip pain. The most common age group which was affected was 51-60 years (20%) and 21-30 years (20%). The most common pathology amongst the patients was Avascular necrosis of femoral head seen in 44% of the patients, osteoarthritis was seen in 54 patients, Tuberculosis in 5 patients, 2 had Perthe’s disease, joint effusion was observed in 6 patients.Conclusions: MRI of the hip joint is an informative, diagnostic, non-invasive, rapid and accurate imaging modality for the assessment of hip pain and sufficient imaging modality for delineation of different hip joint pathology.


Author(s):  
Alan P. Koretsky ◽  
Afonso Costa e Silva ◽  
Yi-Jen Lin

Magnetic resonance imaging (MRI) has become established as an important imaging modality for the clinical management of disease. This is primarily due to the great tissue contrast inherent in magnetic resonance images of normal and diseased organs. Due to the wide availability of high field magnets and the ability to generate large and rapidly switched magnetic field gradients there is growing interest in applying high resolution MRI to obtain microscopic information. This symposium on MRI microscopy highlights new developments that are leading to increased resolution. The application of high resolution MRI to significant problems in developmental biology and cancer biology will illustrate the potential of these techniques.In combination with a growing interest in obtaining high resolution MRI there is also a growing interest in obtaining functional information from MRI. The great success of MRI in clinical applications is due to the inherent contrast obtained from different tissues leading to anatomical information.


1996 ◽  
Vol 24 (2) ◽  
pp. 168-176 ◽  
Author(s):  
Alexander Y. Shin ◽  
William D. Morin ◽  
John D. Germany ◽  
Steven B. Jones ◽  
Anthony S. Lapinsky

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jae Heon Kim ◽  
Hong J. Lee ◽  
Yun Seob Song

A reliablein vivoimaging method to localize transplanted cells and monitor their viability would enable a systematic investigation of cell therapy. Most stem cell transplantation studies have used immunohistological staining, which does not provide information about the migration of transplanted cellsin vivoin the same host. Molecular imaging visualizes targeted cells in a living host, which enables determining the biological processes occurring in transplanted stem cells. Molecular imaging with labeled nanoparticles provides the opportunity to monitor transplanted cells noninvasively without sacrifice and to repeatedly evaluate them. Among several molecular imaging techniques, magnetic resonance imaging (MRI) provides high resolution and sensitivity of transplanted cells. MRI is a powerful noninvasive imaging modality with excellent image resolution for studying cellular dynamics. Several types of nanoparticles including superparamagnetic iron oxide nanoparticles and magnetic nanoparticles have been used to magnetically label stem cells and monitor viability by MRI in the urologic field. This review focuses on the current role and limitations of MRI with labeled nanoparticles for tracking transplanted stem cells in urology.


2004 ◽  
Vol 12 (3) ◽  
pp. 238-243 ◽  
Author(s):  
Elisa Emi Tanaka ◽  
Emiko Saito Arita ◽  
Bunji Shibayama

Occlusal stabilization appliances or splints are the most widely employed method for treatment of temporomandibular disorders (TMD). Magnetic Resonance Imaging (MRI) is the most indicated imaging modality to evaluate the components of the temporomandibular joint (TMJ). Forty patients with signs and symptoms of temporomandibular disorders were treated with splints for a mean period of 12 months, comprising regular semimonthly follow-ups. After stabilization of the clinical status, occlusal adjustments and MRI evaluation were performed. It was concluded that the success of this kind of treatment are related to the total (70%) or partial improvement (22.5%) of painful symptomatology and to the functional reestablishment of the craniomandibular complex. The MRI allowed evaluation and also the conclusion that the splints provide conditions for the organism to develop means to resist to the temporomandibular disorders by means of elimination of several etiologic factors. Moreover, after treatment the patients are able to cope with disc displacements with larger or smaller tolerance.


2007 ◽  
Vol 15 (4) ◽  
pp. 157-164 ◽  
Author(s):  
Carolyn M. Sofka ◽  
Hollis G. Potter

2013 ◽  
Vol 16 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Y. Zhalniarovich ◽  
Z. Adamiak ◽  
A. Pomianowski ◽  
M. Jaskólska

Abstract Magnetic resonance imaging is the best imaging modality for the brain and spine. Quality of the received images depends on many technical factors. The most significant factors are: positioning the patient, proper coil selection, selection of appropriate sequences and image planes. The present contrast between different tissues provides an opportunity to diagnose various lesions. In many clinics magnetic resonance imaging has replaced myelography because of its noninvasive modality and because it provides excellent anatomic detail. There are many different combinations of sequences possible for spinal and brain MR imaging. Most frequently used are: T2-weighted fast spin echo (FSE), T1- and T2-weighted turbo spin echo, Fluid Attenuation Inversion Recovery (FLAIR), T1-weighted gradient echo (GE) and spin echo (SE), high-resolution three-dimensional (3D) sequences, fat-suppressing short tau inversion recovery (STIR) and half-Fourier acquisition single-shot turbo spin echo (HASTE). Magnetic resonance imaging reveals neurologic lesions which were previously hard to diagnose antemortem.


2021 ◽  
Vol 8 ◽  
Author(s):  
Silke Hecht ◽  
Kimberly M. Anderson ◽  
Aude Castel ◽  
John F. Griffin ◽  
Adrien-Maxence Hespel ◽  
...  

Computed tomography (CT) is the imaging modality of choice to evaluate patients with acute head trauma. However, magnetic resonance imaging (MRI) may be chosen in select cases. The objectives of this study were to evaluate the agreement of MRI with CT in the assessment for presence or absence of acute skull fractures in a canine and feline cadaver model, compare seven different MRI sequences (T1-W, T2-W, T2-FLAIR, PD-W, T2*-W, “SPACE” and “VIBE”), and determine agreement of four different MRI readers with CT data. Pre- and post-trauma CT and MRI studies were performed on 10 canine and 10 feline cadaver heads. Agreement of MRI with CT as to presence or absence of a fracture was determined for 26 individual osseous structures and four anatomic regions (cranium, face, skull base, temporomandibular joint). Overall, there was 93.5% agreement in assessing a fracture as present or absent between MRI and CT, with a significant difference between the pre and post trauma studies (99.4 vs. 87.6%; p < 0.0001; OR 0.042; 95% CI 0.034–0.052). There was no significant difference between dogs and cats. The agreement for the different MRI sequences with CT ranged from 92.6% (T2*-W) to 94.4% (PD-W). There was higher agreement of MRI with CT in the evaluation for fractures of the face than other anatomic regions. Agreement with CT for individual MRI readers ranged from 92.6 to 94.7%. A PD-W sequence should be added to the MR protocol when evaluating the small animal head trauma patient.


Sign in / Sign up

Export Citation Format

Share Document