scholarly journals Biomarkers for the diagnosis of Alzheimer’s disease, dementia Lewy body, frontotemporal dementia and vascular dementia

2019 ◽  
Vol 32 (1) ◽  
pp. e100054 ◽  
Author(s):  
Joshua Marvin Anthony Maclin ◽  
Tao Wang ◽  
Shifu Xiao

BackgroundDementia is a chronic brain disorder classified by four distinct diseases that impact cognition and mental degeneration. Each subgroup exhibits similar brain deficiencies and mutations. This review will focus on four dementia subgroups: Alzheimer’s disease, vascular dementia, frontotemporal dementia and dementia Lewy body.AimThe aim of this systematic review is to create a concise overview of unique similarities within dementia used to locate and identify new biomarker methods in diagnosing dementia.Methods123 300 articles published after 2010 were identified from PubMed, JSTOR, WorldCat Online Computer Library and PALNI (Private Academic Library Network of Indiana) using the following search items (in title or abstract): ‘Neurodegenerative Diseases’ OR ‘Biomarkers’ OR ‘Alzheimer’s Disease’ OR ‘Frontal Temporal Lobe Dementia’ OR ‘Vascular Dementia’ OR ‘Dementia Lewy Body’ OR ‘Cerebral Spinal Fluid’ OR ‘Mental Cognitive Impairment’. 47 studies were included in the qualitative synthesis.ResultsEvidence suggested neuroimaging with amyloid positron emission tomography (PET) scanning and newly found PET tracers to be more effective in diagnosing Alzheimer’s and amnesiac mental cognitive impairment than carbon-11 Pittsburgh compound-B radioisotope tracer. Newly created methods to make PET scans more accurate and practical in clinical settings signify a major shift in diagnosing dementia and neurodegenerative diseases.ConclusionVast improvements in neuroimaging techniques have led to newly discovered biomarkers and diagnostics. Neuroimaging with amyloid PET scanning surpasses what had been considered the dominant method of neuroimaging and MRI. Newly created methods to make PET scans more accurate and practical in clinical settings signify a major shift in diagnosing dementia pathology. Continued research and studies must be conducted to improve current findings and streamline methods to further subcategorise neurodegenerative disorders and diagnosis.

2020 ◽  
Vol 45 (2) ◽  
Author(s):  
Arpita Chakraborty ◽  
Samir Kumar Praharaj ◽  
R. V. Krishnananda Prabhu ◽  
M. Mukhyaprana Prabhu

AbstractBackgroundMore than half portion of the brain is formed by lipids. They play critical roles in maintaining the brain's structural and functional components. Any dysregulation in these brain lipids can lead to cognitive dysfunction which are associated with neurological disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, vascular dementia etc. Studies have linked lipids with cognitive impairment. But not much has been studied about the complex brain lipids which might play a pivotal role in cognitive impairment. This review aims to highlight the lipidomic profiles in patients with cognitive dysfunction.ResultsForty-five articles were reviewed. These studies show alterations in complex lipids such as sphingolipids, phospholipids, glycolipids and sterols in brain in various neurological disorders such as vascular dementia, Parkinson's and Alzheimer's disease. However, the classes of fatty acids in these lipids involved are different across studies.ConclusionsThere is a need for targeted lipidomics analysis, specifically including sphingolipids in patients with neurodegenerative disorders so as to improve diagnostics as well as management of these disorders.


2021 ◽  
Author(s):  
Pedro Jiménez-Guerrero ◽  
Patricia Guzmán ◽  
Patricia Tarín-Carrasco ◽  
María Morales-Suarez-Varela

<p>Air pollution has a serious impact on health and this problem will be aggravated under the action of climate change. This climate penalty can play an important role when trying to assess future impacts of air pollution on several pathologies. Among these diseases, the scientific literature is scarce when referring to the influence of atmospheric pollutants on neurodegenerative diseases for future climate change scenarios. Under this framework, this contribution evaluates the incidence of dementia (Alzheimer's disease and vascular dementia) occurring in Europe due to exposure of air pollution (essentially NO<sub>2</sub> and PM2.5) for the present climatic period (1991-2010) and for a future climate change scenario (RCP8.5, 2031-2050). The GEMM methodology has been applied to climatic air pollution simulations using the chemistry/climate regional model WRF-Chem. Present population data were obtained from NASA's Center for Socioeconomic Data and Applications (SEDAC); while future population projections for the year 2050 were derived from the United Nations (UN) Department of Economic and Social Affairs-Population Dynamics.</p><p>Overall, the estimated incidence of Alzheimer's disease and vascular dementia associated to air pollution over Europe is 498,000 [95% confidence interval (95% CI) 348,600-647,400] and 314,000 (95% CI 257,500-401,900) new cases per year, respectively. An important increase in the future incidence is projected (around 72% for both types of dementia) when considering the effect of climate change together with the foreseen changes in the dynamics of population (expected aging of European population). The climate penalty has a limited effect on the total changes of Alzheimer's disease and vascular dementia (approx. 0.5%), since the large increase in new annual cases over southern Europe is offset by the decrease of the incidence associated to these pathologies over more northern countries, favored by an improvement of air pollution caused by the projected enhancement of rainfall.</p>


2019 ◽  
Vol 34 (8) ◽  
pp. 1244-1250 ◽  
Author(s):  
Eleanor King ◽  
John O'Brien ◽  
Paul Donaghy ◽  
Caroline H. Williams-Gray ◽  
Rachael A. Lawson ◽  
...  

Author(s):  
J Keith-Rokosh ◽  
L C Ang

Objectives:The neuropathological findings of 32 progressive supranuclear palsy (PSP) cases over a period of 17 years were reviewed.Results:Of the 26 cases with adequate clinical data, 20 patients either presented with cognitive dysfunction or developed a cognitive impairment subsequently during the course of the disease. Co-existing changes of argyrophilic grains and corticobasal degeneration (CBD) were found in 28% and 32% of the cases respectively. Alzheimer-related pathology was found in 69% of cases but only 18.75% of cases fulfilled the consortium to establish a registry for Alzheimer's disease (CERAD) criteria for either definite or probable Alzheimer's disease. Lewy bodies were noted in four cases (12.5%), all in the subcortical regions. Only seven cases of PSP showed no pathological evidence of other co-existing neurodegenerative diseases. The severity of the cerebrovascular pathology in this cohort was insufficient to explain any clinical symptomatology.Conclusions:As in previous studies, this study has demonstrated the frequent co-existence of pathological changes usually noted in other neurodegenerative diseases in PSP. Whether these coexisting pathological changes contribute to the cognitive impairment in PSP remains uncertain.


2001 ◽  
Vol 7 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Catriona D. McCullagh ◽  
David Craig ◽  
Stephen P. McIlroy ◽  
A. Peter Passmore

There is little doubt that dementia is a very common cause of disability and dependency in our society. Since dementia of whatever type is usually more common with increasing age, then as population demographics change, so will the prevalence of dementia. Dementia is a generic term and the objective for clinicians, once dementia is suspected, is to attempt to define the cause. Alzheimer's disease is the most common cause of dementia, and in most centres vascular dementia would feature as the next most common aetiology. In some centres, Lewy body dementia is the second most common cause. Mixed Alzheimer's disease and vascular dementia would also feature high on the list at most centres.


Sign in / Sign up

Export Citation Format

Share Document