scholarly journals 41 Novel heart failure biomarker CLEC3B is associated with cardiac fibrosis, and impacts cardiac fibroblast cell function in vitro

Author(s):  
K Edgar ◽  
C Tonry ◽  
B Collins ◽  
C Moravec ◽  
M Ledwidge ◽  
...  
Author(s):  
Maximilian Hoffmann ◽  
Theresa A. Kant ◽  
Ramona Emig ◽  
Johanna S. E. Rausch ◽  
Manja Newe ◽  
...  

Abstract Cardiovascular diseases are exacerbated and driven by cardiac fibrosis. TGFβ induces fibroblast activation and differentiation into myofibroblasts that secrete excessive extracellular matrix proteins leading to stiffening of the heart, concomitant cardiac dysfunction, and arrhythmias. However, effective pharmacotherapy for preventing or reversing cardiac fibrosis is presently unavailable. Therefore, drug repurposing could be a cost- and time-saving approach to discover antifibrotic interventions. The aim of this study was to investigate the antifibrotic potential of mesalazine in a cardiac fibroblast stress model. TGFβ was used to induce a profibrotic phenotype in a human cardiac fibroblast cell line. After induction, cells were treated with mesalazine or solvent control. Fibroblast proliferation, key fibrosis protein expression, extracellular collagen deposition, and mechanical properties were subsequently determined. In response to TGFβ treatment, fibroblasts underwent a profound phenoconversion towards myofibroblasts, determined by the expression of fibrillary αSMA. Mesalazine reduced differentiation nearly by half and diminished fibroblast proliferation by a third. Additionally, TGFβ led to increased cell stiffness and adhesion, which were reversed by mesalazine treatment. Collagen 1 expression and deposition—key drivers of fibrosis—were significantly increased upon TGFβ stimulation and reduced to control levels by mesalazine. SMAD2/3 and ERK1/2 phosphorylation, along with reduced nuclear NFκB translocation, were identified as potential modes of action. The current study provides experimental pre-clinical evidence for antifibrotic effects of mesalazine in an in vitro model of cardiac fibrosis. Furthermore, it sheds light on possible mechanisms of action and suggests further investigation in experimental and clinical settings.


2018 ◽  
Vol 19 (10) ◽  
pp. 3207 ◽  
Author(s):  
Fahmida Jahan ◽  
Natalie Landry ◽  
Sunil Rattan ◽  
Ian Dixon ◽  
Jeffrey Wigle

Following cardiac injury, fibroblasts are activated and are termed as myofibroblasts, and these cells are key players in extracellular matrix (ECM) remodeling and fibrosis, itself a primary contributor to heart failure. Nutraceuticals have been shown to blunt cardiac fibrosis in both in-vitro and in-vivo studies. However, nutraceuticals have had conflicting results in clinical trials, and there are no effective therapies currently available to specifically target cardiac fibrosis. We have previously shown that expression of the zinc finger E box-binding homeobox 2 (Zeb2) transcription factor increases as fibroblasts are activated. We now show that Zeb2 plays a critical role in fibroblast activation. Zeb2 overexpression in primary rat cardiac fibroblasts is associated with significantly increased expression of embryonic smooth muscle myosin heavy chain (SMemb), ED-A fibronectin and α-smooth muscle actin (α-SMA). We found that Zeb2 was highly expressed in activated myofibroblast nuclei but not in the nuclei of inactive fibroblasts. Moreover, ectopic Zeb2 expression in myofibroblasts resulted in a significantly less migratory phenotype with elevated contractility, which are characteristics of mature myofibroblasts. Knockdown of Zeb2 with siRNA in primary myofibroblasts did not alter the expression of myofibroblast markers, which may indicate that Zeb2 is functionally redundant with other profibrotic transcription factors. These findings add to our understanding of the contribution of Zeb2 to the mechanisms controlling cardiac fibroblast activation.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Jie Ni ◽  
Yihai Liu ◽  
Lina Kang ◽  
Lian Wang ◽  
Zhonglin Han ◽  
...  

AbstractHuman trophoblast stem cells (TSCs) have been confirmed to play a cardioprotective role in heart failure. However, whether trophoblast stem cell-derived exosomes (TSC-Exos) can protect cardiomyocytes from doxorubicin (Dox)-induced injury remains unclear. In the present study, TSC-Exos were isolated from the supernatants of human trophoblasts using the ultracentrifugation method and characterized by transmission electron microscopy and western blotting. In vitro, primary cardiomyocytes were subjected to Dox and treated with TSC-Exos, miR-200b mimic or miR-200b inhibitor. Cellular apoptosis was observed by flow cytometry and immunoblotting. In vivo, mice were intraperitoneally injected into Dox to establish a heart failure model. Then, different groups of mice were administered either PBS, adeno-associated virus (AAV)-vector, AAV-miR-200b-inhibitor or TSC-Exos via tail vein injection. Then, the cardiac function, cardiac fibrosis and cardiomyocyte apoptosis in each group were evaluated, and the downstream molecular mechanism was explored. TSC-Exos and miR-200b inhibitor both decreased primary cardiomyocyte apoptosis. Similarly, mice receiving TSC-Exos and AAV-miR-200b inhibitor exhibited improved cardiac function, accompanied by reduced apoptosis and inflammation. The bioinformatic prediction and luciferase reporter results confirmed that Zeb1 was a downstream target of miR-200b and had an antiapoptotic effect. TSC-Exos attenuated doxorubicin-induced cardiac injury by playing antiapoptotic and anti-inflammatory roles. The underlying mechanism could be an increase in Zeb1 expression by the inhibition of miR-200b expression. In summary, this study sheds new light on the application of TSC-Exos as a potential therapeutic tool for heart failure.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Dongtak Jeong ◽  
Changwon Kho ◽  
Ahyoung Lee ◽  
Woo Jin Park ◽  
Roger Hajjar

CCN family members are matricellular proteins with diverse roles in cell function. Recently, we showed that the differential expression of CCN2 and CCN5 during cardiac remodeling suggests that these two members of the CCN family play opposing roles during the development of cardiac hypertrophy and fibrosis. Since it is reported that an underlying morphological correlate of diastolic dysfunction is cardiac fibrosis, which leads to increased stiffness of the heart, we aimed to evaluate the role of CCN5 on cardiac fibrosis and function by the gene delivery using the cardiotropic AAV9 vector. We generated pressure-overload heart failure models in mouse by TAC operation. After 8-10 weeks of TAC on mice, HF was confirmed by Echocardiography. In those HF mice, AAV9-GFP (control) and AAV9-CCN5 were addressed by IV. Two more months later, cardiac function was evaluated by echocardiography and invasive hemodynamics. Protein and RNA expression levels of CCN5, several types of collagen and conventional TGF-beta signaling related genes were evaluated by western blot and quantitative real time PCR analysis. First, we were able to achieve about 4-5 fold increase of CCN5 expression by AAV9-CCN5 injection without any change in heart function. Second, CCN5 expression level in blood was not significantly altered after AAV9-CCN5 gene transfer because it may be the result of the cardiac tropism of the vector used. The HF model by TAC surgery was confirmed with echocardiography (FS (%)). Overall average FS (%) in HF was 41.87+/− 5.27 (n=16) and in non-surgery control mice was 58.39 +/− 2.06(n=4). After AAV9 injection, cardiac function of CCN5 injected mice was sustained but AAV9-GFP injected mice showed severe cardiac dysfunction and dilation (AAV-GFP (24.29+/− 9.11) vs AAV-CCN5 (42.66 +/− 4.73)). Third, western blot analysis showed that the downstream effectors, namely TGF-beta signaling pathways were significantly down-regulated in CCN5 injected mice. In addition, fibrotic area of the heart was tremendously reduced. Finally, CCN5 expression is significantly decreased in human heart failure patients compared to those in nonfailing donors. Taken together our data would indicate that CCN5 may be a promising therapeutic target to reduce cardiac fibrosis.


2017 ◽  
Vol 214 (11) ◽  
pp. 3311-3329 ◽  
Author(s):  
Tania Nevers ◽  
Ane M. Salvador ◽  
Francisco Velazquez ◽  
Njabulo Ngwenyama ◽  
Francisco J. Carrillo-Salinas ◽  
...  

Despite emerging data indicating a role for T cells in profibrotic cardiac repair and healing after ischemia, little is known about whether T cells directly impact cardiac fibroblasts (CFBs) to promote cardiac fibrosis (CF) in nonischemic heart failure (HF). Recently, we reported increased T cell infiltration in the fibrotic myocardium of nonischemic HF patients, as well as the protection from CF and HF in TCR-α−/− mice. Here, we report that T cells activated in such a context are mainly IFN-γ+, adhere to CFB, and induce their transition into myofibroblasts. Th1 effector cells selectively drive CF both in vitro and in vivo, whereas adoptive transfer of Th1 cells, opposite to activated IFN-γ−/− Th cells, partially reconstituted CF and HF in TCR-α−/− recipient mice. Mechanistically, Th1 cells use integrin α4 to adhere to and induce TGF-β in CFB in an IFN-γ–dependent manner. Our findings identify a previously unrecognized role for Th1 cells as integrators of perivascular CF and cardiac dysfunction in nonischemic HF.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Wei-Ting ◽  
Y.W Lin ◽  
C.H Ho ◽  
Z.C Chen

Abstract Objectives Cancer patients with diabetes have an increasing risk of Doxorubicin (Dox)-induced cardiotoxicity. Despite previous studies reporting benefits of dapagliflozin on the cardiovascular system, it remains unknown whether dapagliflozin has a cardioprotective effect in cancer patients with diabetes receiving Dox therapy. The purpose of this study is to investigate the potentials of dapagliflozin in preventing Dox induced cardiotoxicity. Methods Using National Health Insurance Database, the incidence of heart failure of breast cancer patients with or without diabetes was investigated. Also, streptozotocin (STZ) induced diabetic rats were pretreated with oral dapagliflozin (10 mg/kg/day) for 6 weeks and received Dox (5 mg/kg/week) for 4 weeks via intraperitoneally injection. Sequential echocardiography was applied to assess the cardiac function. For in vitro analysis, H9C2 cardiomyocytes, cultured in high glucose (30 mM), were treated with dapagliflozin at 10 mM and subsequently exposed to Dox at 1 mM. The apoptosis and endoplasmic reticulum (ER) stress related protein expression were measured by immunohistochemistry and western blotting. Results Among the studied patients, those with diabetes have a higher risk of heart failure while patients prescribed with dapagliflozin lowered the risks. Correspondingly, dapagliflozin treatment effectively inhibited Dox-induced apoptosis and reactive oxygen species accumulation in cardiomyocytes. Also, the reduction of cardiac fibrosis as well as apoptosis in rats treated with dapagliflozin resulted in significantly improved cardiac function. Dapagliflozin also decreased the cardiac expression of Bax, cleaved caspase 3 and increased Bcl-2. Mechanistically, we showed that dapagliflozin significantly reduced ER stress-associated proteins including GRP78, PERK, eIF 2a, ATF-4, and CHOP. Conclusions Our study revealed for the first time that dapagliflozin mitigated Dox-induced cardiomyocyte apoptosis in diabetes via inhibiting ER stress. These results indicate that dapagliflozin could be useful in preventing cardiotoxicity in diabetic cancer patients receiving Dox treatment. Funding Acknowledgement Type of funding source: Private hospital(s). Main funding source(s): Chi-Mei Medical Center, Tainan, Taiwan


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Qiankun Bao ◽  
Bangying Zhang ◽  
Ya Suo ◽  
Chen Liu ◽  
Qian Yang ◽  
...  

Intermittent hypoxia (IH) is the predominant pathophysiological disturbance in obstructive sleep apnea (OSA), known to be independently associated with cardiovascular diseases. However, the effect of IH on cardiac fibrosis and molecular events involved in this process are unclear. Here, we tested IH in angiotensin II (Ang II)-induced cardiac fibrosis and signaling linked to fibroblast activation. IH triggered cardiac fibrosis and aggravated Ang II-induced cardiac dysfunction in mice. Plasma thrombospondin-1 (TSP1) content was upregulated in both IH-exposed mice and OSA patients. Moreover, both in vivo and in vitro results showed IH-induced cardiac fibroblast activation and increased TSP1 expression in cardiac fibroblasts. Mechanistically, phosphorylation of STAT3 at Tyr705 mediated the IH-induced TSP1 expression and fibroblast activation. Finally, STAT3 inhibitor S3I-201 or AAV9 carrying a periostin promoter driving the expression of shRNA targeting Stat3 significantly attenuated the synergistic effects of IH and Ang II on cardiac fibrosis in mice. This work suggests a potential therapeutic strategy for OSA-related fibrotic heart disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Yang Zhao ◽  
Huaxin Sun ◽  
Kai Li ◽  
Luxiang Shang ◽  
Xiaoyan Liang ◽  
...  

Background. Cholinergic anti-inflammatory pathway (CAP) is implicated in cardioprotection in chronic heart failure (CHF) by downregulating inflammation response. Mitochondrial injuries play an important role in ventricular remodeling of the CHF process. Herein, we aim to investigate whether CAP elicitation prevents ventricular remodeling in CHF by protecting myocardial mitochondrial injuries and its underlying mechanisms. Methods and Results. CHF models were established by ligation of anterior descending artery for 5 weeks. Postoperative survival rats were assigned into 5 groups: the sham group (sham, n = 10 ), CHF group (CHF, n = 11 ), Vag group (CHF+vagotomy, n = 10 ), PNU group (CHF+PNU-282987 for 4 weeks, n = 11 ), and Vag+PNU group (CHF+vagotomy+PNU-282987 for 4 weeks, n = 10 ). The antiventricular remodeling effect of cholinergic elicitation was evaluated in vivo, and H9C2 cells were selected for the TNF-α gradient stimulation experiment in vitro. In vivo, CAP agitated by PNU-282987 alleviated the left ventricular dysfunction and inhibited the energy metabolism remodeling. Further, cholinergic elicitation increased myocardium ATP levels and reduced systemic inflammation. CAP induction alleviates macrophage infiltration and cardiac fibrosis, of which the effect is counteracted by vagotomy. Myocardial mitochondrial injuries were ameliorated by CAP activation, including the reserved ultrastructural integrity, declining ROS overload, reduced myocardial apoptosis, and enhanced mitochondrial fusion. In vitro, TNF-α intervention significantly exacerbated the mitochondrial damage in H9C2 cells. Conclusion. CAP elicitation effectively improves ischemic ventricular remodeling by suppressing systemic and cardiac inflammatory response, attenuating cardiac fibrosis and potentially alleviating the mitochondrial dysfunction linked to hyperinflammation reaction.


Author(s):  
Anak Agung Wiradewi Lestari

Galectin-3 is a reasonably stable biomarker. It can be detected even before the onset of heart failure occurs. Heart Failure (HF) is one of the complications of AMI as well as one of the major cardiovascular parameters. One study showed that elevated levels of Galectin-3 that persisted up to 3-6 months of the follow-up period in patients with heart failure were associated with a poorer prognosis. Many studies explain that the role of Galectin-3 is strong in cardiac remodeling/fibrosis and the occurrence of heart failure. Inhibition of Galectin-3 by pharmacological agents has been shown to be able to the prevent that cardiac fibrosis process, particularly in patients with advanced heart failure. Since its discovery as a gene product induced by cardiomyocyte stretch in vitro, ST2 has emerged as a powerful player with IL-33 in modulating ventricular function and remodeling via effects on apoptosis, inflammation and myocardial fibrosis. Clinically, measurement of sST2 appears promising as a biomarker for remodeling and outcome across the AHA HF Stages. Circulating levels of sST2 are strongly related to short and long-term post-discharge mortality in acute coronary syndromes and HF, as well as markers of cardiac structure and function. Current pre-clinical and clinical documentation strongly support MMP-9 as a panel member in the biomarker list to diagnose or treat the pathophysiology of post-MI ventricular remodeling and congestive heart failure. Based on the evidence provided, further prospective studies are required to assess the prognostic value of MMP-9 for post-MI remodeling, particularly in comparison with traditional markers.  


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Yosuke Kayama

To elucidate the molecular mechanisms of heart failure, we examined expression of 8800 genes in the heart of hypertensive heart failure model (Dahl salt-sensitive rats). DNA chip analysis revealed that 12-lipoxygenase (12-LOX) was markedly upregulated in the failing heart. 12-LOX is a key enzyme of the arachidonic cascade that metabolizes eicosanoid. Until recently, 12-LOX has been reported to play an important role in the development of atherogenesis, diabetes, and neurogenerative disease. However, the role of 12-LOX in heart failure has not been examined. To determine whether increased expression of 12-LOX causes heart failure, we established transgenic mice that overexpress 12-LOX only in cardiomyocytes. Echocardiogra-phy showed that 12-LOX transgenic mice developed systolic dysfunction from as early as 16 weeks old. Histological analysis revealed that cardiac fibrosis was increased in 12-LOX transgenic mice with advancing age, which was associated with infiltration of macrophages. Consistent with these observations, cardiac expression of monocyte chemoattractant protein-1 (MCP-1) was upregulated in 12-LOX transgenic mice compared to those of wild-type mice. In vitro experiments demonstrated that treatment with 12-hydroxy-eicosatetraenotic acid, a major metabolite of 12-LOX, increased MCP-1 expression in cardiac fibroblast and endothelial cells but not in cardiomyocytes. To determine the role of MCP-1 in the heart of 12LOX transgenic mice, we treated these mice with 7ND, an inhibitor of MCP-1, for 32 weeks. Chronic treatment with 7ND attenuated infiltration of macrophages into the myocardium and prevented systolic dysfunction and cardiac fibrosis in 12-LOX transgenic mice. Likewise, disruption of 12-LOX significantly reduced expression of MCP-1 and infiltration of macrophages in the heart, thereby inhibiting cardiac remodeling after myocardial infarction. Our in vitro and in vivo results suggest that cardiac 12-LOX is critically involved in the development of heart failure and that inhibition of 12-LOX will be a novel target for the treatment of this condition.


Sign in / Sign up

Export Citation Format

Share Document