scholarly journals Blood-based kinase activity profiling: a potential predictor of response to immune checkpoint inhibition in metastatic cancer

2020 ◽  
Vol 8 (2) ◽  
pp. e001607
Author(s):  
Daan P Hurkmans ◽  
Els M E Verdegaal ◽  
Sabrina A Hogan ◽  
Rik de Wijn ◽  
Lies Hovestad ◽  
...  

BackgroundMany cancer patients do not obtain clinical benefit from immune checkpoint inhibition. Checkpoint blockade targets T cells, suggesting that tyrosine kinase activity profiling of baseline peripheral blood mononuclear cells may predict clinical outcome.MethodsHere a total of 160 patients with advanced melanoma or non-small-cell lung cancer (NSCLC), treated with anti-cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA-4) or anti-programmed cell death 1 (anti-PD-1), were divided into five discovery and cross-validation cohorts. The kinase activity profile was generated by analyzing phosphorylation of peripheral blood mononuclear cell lysates in a microarray comprising of 144 peptides derived from sites that are substrates for protein tyrosine kinases. Binary grouping into patients with or without clinical benefit was based on Response Evaluation Criteria in Solid Tumors V.1.1. Predictive models were trained using partial least square discriminant analysis (PLS-DA), performance of the models was evaluated by estimating the correct classification rate (CCR) using cross-validation.ResultsThe kinase phosphorylation signatures segregated responders from non-responders by differences in canonical pathways governing T-cell migration, infiltration and co-stimulation. PLS-DA resulted in a CCR of 100% and 93% in the anti-CTLA-4 and anti-PD1 melanoma discovery cohorts, respectively. Cross-validation cohorts to estimate the accuracy of the predictive models showed CCRs of 83% for anti-CTLA-4 and 78% or 68% for anti-PD-1 in melanoma or NSCLC, respectively.ConclusionBlood-based kinase activity profiling for response prediction to immune checkpoint inhibitors in melanoma and NSCLC revealed increased kinase activity in pathways associated with T-cell function and led to a classification model with a highly accurate classification rate in cross-validation groups. The predictive value of kinase activity profiling is prospectively verified in an ongoing trial.

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Brian W. Labadie ◽  
Ping Liu ◽  
Riyue Bao ◽  
Michael Crist ◽  
Ricardo Fernandes ◽  
...  

Abstract Background Clinical variables may correlate with lack of response to treatment (primary resistance) or clinical benefit in patients with clear cell renal cell carcinoma (ccRCC) treated with anti-programmed death 1/ligand one antibodies. Methods In this multi-institutional collaboration, clinical characteristics of patients with primary resistance (defined as progression on initial computed tomography scan) were compared to patients with clinical benefit using Two sample t-test and Chi-square test (or Fisher’s Exact test). The Kaplan–Meier method was used to estimate the distribution of progression-free survival (PFS) and overall survival (OS) in all patients and the subsets of patients with clinical benefit or primary resistance. Cox’s regression model was used to evaluate the correlation between survival endpoints and variables of interest. To explore clinical factors in a larger, independent patient sample, The Cancer Genome Atlas (TCGA) was analyzed. RNAseq gene expression data as well as demographic and clinical information were downloaded for primary tumors of 517 patients included within TCGA-ccRCC. Results Of 90 patients, 38 (42.2%) had primary resistance and 52 (57.8%) had clinical benefit. Compared with the cohort of patients with initial benefit, primary resistance was more likely to occur in patients with worse ECOG performance status (p = 0.03), earlier stage at diagnosis (p = 0.04), had no prior nephrectomy (p = 0.04) and no immune-related adverse events (irAE) (p = 0.02). In patients with primary resistance, improved OS was significantly correlated with lower International Metastatic RCC Database Consortium risk score (p = 0.02) and lower neutrophil:lymphocyte ratio (p = 0.04). In patients with clinical benefit, improved PFS was significantly associated with increased BMI (p = 0.007) and irAE occurrence (p = 0.02) while improved OS was significantly correlated with overweight BMI (BMI 25–30; p = 0.03) and no brain metastasis (p = 0.005). The cohort TCGA-ccRCC was examined for the correlations between gene expression patterns, clinical factors, and survival outcomes observing associations of T-cell inflammation and angiogenesis signatures with histologic grade, pathologic stage and OS. Conclusions Clinical characteristics including performance status, BMI and occurrence of an irAE associate with outcomes in patients with ccRCC treated with immunotherapy. The inverse association of angiogenesis gene signature with ccRCC histologic grade highlight opportunities for adjuvant combination VEGFR2 tyrosine kinase inhibitor and immune-checkpoint inhibition.


2020 ◽  
Author(s):  
Shivangi Lohia ◽  
Stephanie Flukes ◽  
Alexander N. Shoushtari ◽  
Akash D. Shah ◽  
Ian Ganly ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shuang Qu ◽  
Zichen Jiao ◽  
Geng Lu ◽  
Bing Yao ◽  
Ting Wang ◽  
...  

Abstract Background Although using a blockade of programmed death-ligand 1 (PD-L1) to enhance T cell immune responses shows great promise in tumor immunotherapy, the immune-checkpoint inhibition strategy is limited for patients with solid tumors. The mechanism and efficacy of such immune-checkpoint inhibition strategies in solid tumors remains unclear. Results Employing qRT-PCR, Sanger sequencing, and RNA BaseScope analysis, we show that human lung adenocarcinoma (LUAD) all produce a long non-coding RNA isoform of PD-L1 (PD-L1-lnc) by alternative splicing, regardless if the tumor is positive or negative for the protein PD-L1. Similar to PD-L1 mRNA, PD-L1-lnc in various lung adenocarcinoma cells is significantly upregulated by IFNγ. Both in vitro and in vivo studies demonstrate that PD-L1-lnc increases proliferation and invasion but decreases apoptosis of lung adenocarcinoma cells. Mechanistically, PD-L1-lnc promotes lung adenocarcinoma progression through directly binding to c-Myc and enhancing c-Myc transcriptional activity. Conclusions In summary, the PD-L1 gene can generate a long non-coding RNA through alternative splicing to promote lung adenocarcinoma progression by enhancing c-Myc activity. Our results argue in favor of investigating PD-L1-lnc depletion in combination with PD-L1 blockade in lung cancer therapy.


2021 ◽  
Vol 22 (6) ◽  
pp. 3228
Author(s):  
Alexander C. Chacon ◽  
Alexa D. Melucci ◽  
Shuyang S. Qin ◽  
Peter A. Prieto

Metastatic melanoma remains the deadliest form of skin cancer. Immune checkpoint inhibition (ICI) immunotherapy has defined a new age in melanoma treatment, but responses remain inconsistent and some patients develop treatment resistance. The myriad of newly developed small molecular (SM) inhibitors of specific effector targets now affords a plethora of opportunities to increase therapeutic responses, even in resistant melanoma. In this review, we will discuss the multitude of SM classes currently under investigation, current and prospective clinical combinations of ICI and SM therapies, and their potential for synergism in melanoma eradication based on established mechanisms of immunotherapy resistance.


2019 ◽  
Vol 21 (6) ◽  
pp. 730-741 ◽  
Author(s):  
Aida Karachi ◽  
Changlin Yang ◽  
Farhad Dastmalchi ◽  
Elias J Sayour ◽  
Jianping Huang ◽  
...  

Abstract Background The changes induced in host immunity and the tumor microenvironment by chemotherapy have been shown to impact immunotherapy response in both a positive and a negative fashion. Temozolomide is the most common chemotherapy used to treat glioblastoma (GBM) and has been shown to have variable effects on immune response to immunotherapy. Therefore, we aimed to determine the immune modulatory effects of temozolomide that would impact response to immune checkpoint inhibition in the treatment of experimental GBM. Methods Immune function and antitumor efficacy of immune checkpoint inhibition were tested after treatment with metronomic dose (MD) temozolomide (25 mg/kg × 10 days) or standard dose (SD) temozolomide (50 mg/kg × 5 days) in the GL261 and KR158 murine glioma models. Results SD temozolomide treatment resulted in an upregulation of markers of T-cell exhaustion such as LAG-3 and TIM-3 in lymphocytes which was not seen with MD temozolomide. When temozolomide treatment was combined with programmed cell death 1 (PD-1) antibody therapy, the MD temozolomide/PD-1 antibody group demonstrated a decrease in exhaustion markers in tumor infiltrating lymphocytes that was not observed in the SD temozolomide/PD-1 antibody group. Also, the survival advantage of PD-1 antibody therapy in a murine syngeneic intracranial glioma model was abrogated by adding SD temozolomide to treatment. However, when MD temozolomide was added to PD-1 inhibition, it preserved the survival benefit that was seen by PD-1 antibody therapy alone. Conclusion The peripheral and intratumoral immune microenvironments are distinctively affected by dose modulation of temozolomide.


Author(s):  
Julian Taugner ◽  
Lukas Käsmann ◽  
Monika Karin ◽  
Chukwuka Eze ◽  
Benedikt Flörsch ◽  
...  

SummaryBackground. The present study evaluates outcome after chemoradiotherapy (CRT) with concurrent and/or sequential Programmed Cell Death 1 (PD-1) or Ligand 1 (PD-L1) immune checkpoint inhibition (CPI) for inoperable stage III NSCLC patients depending on planning target volume (PTV). Method and patients. Prospective data of thirty-three consecutive patients with inoperable stage III NSCLC treated with CRT and sequential durvalumab (67%, 22 patients) or concurrent and sequential nivolumab (33%, 11 patients) were analyzed. Different PTV cut offs and PTV as a continuous variable were evaluated for their association with progression-free (PFS), local–regional progression-free (LRPFS), extracranial distant metastasis-free (eMFS) and brain-metastasis free-survival (BMFS). Results. All patients were treated with conventionally fractionated thoracic radiotherapy (TRT); 93% to a total dose of at least 60 Gy, 97% of patients received two cycles of concurrent platinum-based chemotherapy. Median follow-up for the entire cohort was 19.9 (range: 6.0–42.4) months; median overall survival (OS), LRFS, BMFS and eMFS were not reached. Median PFS was 22.8 (95% CI: 10.7–34.8) months. Patients with PTV ≥ 900ccm had a significantly shorter PFS (6.9 vs 22.8 months, p = 0.020) and eMFS (8.1 months vs. not reached, p = 0.003). Furthermore, patients with PTV ≥ 900ccm and stage IIIC disease (UICC-TNM Classification 8th Edition) achieved a very poor outcome with a median PFS and eMFS of 3.6 vs 22.8 months (p < 0.001) and 3.6 months vs. not reached (p = 0.001), respectively. PTV as a continuous variable also had a significant impact on eMFS (p = 0.048). However, no significant association of different PTV cut-offs or PTV as a continuous variable with LRPFS and BMFS could be shown. The multivariate analysis that was performed for PTV ≥ 900ccm and age (≥ 65 years), gender (male), histology (non-ACC) as well as T- and N-stage (T4, N3) as covariates also revealed PTV ≥ 900ccm as the only factor that had a significant correlation with PFS (HR: 5.383 (95% CI:1.263–22.942, p = 0.023)). Conclusion. In this prospective analysis of inoperable stage III NSCLC patients treated with definitive CRT combined with concurrent and/or sequential CPI, significantly shorter PFS and eMFS were observed in patients with initial PTV ≥ 900ccm.


Author(s):  
Constantinos Roufas ◽  
Ilias Georgakopoulos-Soares ◽  
Apostolos Zaravinos

Abstract Background Skin melanoma is a highly immunogenic cancer. The intratumoral immune cytolytic activity (CYT) reflects the ability of cytotoxic T and NK cells to eliminate cancer cells, and is associated with improved patient survival. Despite the enthusiastic clinical results seen in advanced-stage metastatic melanoma patients treated with immune checkpoint inhibitors, a subgroup of them will later relapse and develop acquired resistance. We questioned whether CYT associates with different genomic profiles and thus, patient outcome, in skin melanoma. Methods We explored the TCGA-SKCM dataset and stratified patients to distinct subgroups of cytolytic activity. The tumor immune contexture, somatic mutations and recurrent copy number aberrations were calculated using quanTIseq, MutSigCV and GISTIC2. Chromothriptic events were explored using CTLPScanner and cancer neoepitopes were predicted with antigen garnish. Each tumor's immunophenoscore was calculated using Immunophenogram. Mutational signatures and kataegis were explored using SigProfiler and compared to the known single or doublet base substitution signatures from COSMIC. Results Metastatic skin melanomas had significantly higher CYT levels compared to primary tumors. We assessed enrichment for immune-related gene sets within CYT-high tumors, whereas, CYT-low tumors were enriched for non-immune related gene sets. In addition, distinct mutational and neoantigen loads, primarily composed of C > T transitions, along with specific types of copy number aberrations, characterized each cytolytic subgroup. We found a broader pattern of chromothripsis across CYT-low tumors, where chromosomal regions harboring chromothriptic events, contained a higher number of cancer genes. SBS7a/b, SBS5 and SBS1 were the most prevalent mutational signatures across both cytolytic subgroups, but SBS1 differed significantly between them. SBS7a/b was mutually exclusive with SBS5 and SBS1 in both CYT subgroups. CYT-high patients had markedly higher immunophenoscore, suggesting that they should display a clinical benefit upon treatment with immune checkpoint inhibition therapy, compared to CYT-low patients. Conclusions Overall, our data highlight the existence of distinct genomic features across cytolytic subgroups in skin melanoma, which might affect the patients' relapse rate or their acquisition of resistance to immune checkpoint inhibition therapies.


Sign in / Sign up

Export Citation Format

Share Document