scholarly journals 873 Pharmacologic macrophage depletion affects metastasis formation by modulating systemic immune responses in a genetic pancreatic cancer model

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A926-A926
Author(s):  
Heidi Griesmann ◽  
Heidi Griesmann ◽  
Heidi Griesmann ◽  
Christof Drexel ◽  
Nada Milosevic ◽  
...  

BackgroundTumour-associated macrophages (TAM) play an important role in mediating tumour progression. In pancreatic cancer, infiltrating macrophages have been identified not only in invasive tumours, but also in early preinvasive pancreatic intraepithelial neoplasias and are known to mediate tumour progression.MethodsWe aimed to study the impact of pharmacological macrophage depletion by liposomal clodronate in the genetic mouse model of pancreatic cancer (KPC mouse: LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre). KPC mice were treated with liposomal clodronate or control liposomes from week 8 to week 20. Tumour and metastasis formation as well as alterations in local and circulating immune cells and cytokines were analysed.ResultsTreatment with liposomal clodronate effectively reduced CD11b-positive macrophages both in the pancreas and other organs such as liver, lung and spleen. Tumour incidence and size was only slightly reduced. However, metastasis formation in the liver und lungs was markedly diminished after macrophage depletion. Reduced macrophage count was associated with significant alterations in circulating growth factors and mediators known to be secreted by macrophages and associated with angiogenesis, most prominently VEGF. Moreover, application of liposomal clodronate led to marked alterations in circulating immune cells, among them reduced regulatory T cells.ConclusionsPharmacological depletion of macrophages in a genetic mouse model of pancreatic cancer markedly reduced metastasis formation and is associated with modulated profile of both secreted mediators and regulatory T cells. Pharmacological modulation of infiltrating macrophages represents a promising avenue for antimetastatic therapeutic approaches.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14544-e14544 ◽  
Author(s):  
Michal Abraham ◽  
Inbal Mishalian ◽  
Yaniv Harel ◽  
Shiri Klein ◽  
Yaron Pereg ◽  
...  

e14544 Background: Cancer cells affect their micro-environment by recruiting immune cells that support tumor growth, metastasis and inhibition of anti-tumor effector T and NK cell recruitment. In this study, we investigated the role of BL-8040, a CXCR4 antagonist in cancer immunotherapy and its ability to modulate the immunosuppressive tumor micro-environment. Methods: The effect of BL8040 on tumor micro-environment was tested in 3 different cancer mouse models: lung cancer, pancreatic cancer and melanoma. The mobilization of immune cells to the periphery in response to BL8040 was tested, as well as the accumulation of immune cells both within and surrounding the tumor in the pancreatic cancer mouse model. Results: BL8040 was found to be a potent and robust mobilizer of immune cells. Immunophenotyping of the mobilized cells revealed that the mobilization of CD4 and CD8 T lymphocytes, as well as of dendritic cells (DC), was significantly increased in the cancer-bearing mice compared to their naïve counterparts. Importantly, a significant mobilization of effector CD8 T cells and activated CD8 T cells in the cancer-bearing mice was also detected following BL8040 treatment. Concomitantly, in the pancreatic cancer mouse model, treatment with BL8040 increased CD8 T cell accumulation within the tumor and inhibited tumor growth. Conclusions: The immune cell population that is mobilized in response to BL8040 treatment is different in cancer mouse models and naïve mice. The ability of BL8040 to induce mobilization of leukocytes, cytotoxic and activated CD8 T cells and DCs is affected by the presence of a tumor. In our models of pancreatic cancer, mobilization of immune cells from the bone marrow into the circulation and their accumulation within the tumor and tumor microenvironment resulted in inhibition of tumor growth. These results indicate that BL8040 may affect the tumor microenvironment and therefore can potentially synergize with immunomodulatory agents. In vivo pre-clinical studies as well as clinical studies are currently ongoing for testing the combination of BL8040 with immunomodulatory agents in different cancer models.


2013 ◽  
Vol 398 (7) ◽  
pp. 989-996 ◽  
Author(s):  
Lars Plassmeier ◽  
Richard Knoop ◽  
Jens Waldmann ◽  
Rebecca Kesselring ◽  
Malte Buchholz ◽  
...  

2020 ◽  
Vol 48 (12) ◽  
pp. 030006052098094
Author(s):  
Shuang Qin ◽  
Li Li ◽  
Jia Liu ◽  
Jinrui Zhang ◽  
Qing Xiao ◽  
...  

Objective The present study aimed to evaluate the effects of cluster of differentiation (CD)4+CD25+ forkhead box p3 (Foxp3)+ regulatory T cells (Tregs) on unexplained recurrent spontaneous abortion (URSA) and the associated mechanisms. Methods The proportion of CD4+CD25+Foxp3+ Tregs and inflammatory cytokine concentrations in the peripheral blood of women with URSA were measured by flow cytometry and enzyme-linked immunosorbent assay, respectively. CBA/JxDBA/2J mating was used to establish an abortion-prone mouse model and the model mice were treated with the Toll-like receptor 4 (TLR4) antagonist E5564 and the TLR4 agonist lipopolysaccharide. Results The proportion of CD4+CD25+Foxp3+ Tregs was decreased and the inflammatory response was increased in women with URSA. In the abortion-prone mouse model, E5564 significantly increased the proportion of CD4+CD25+Foxp3+ Tregs, decreased the inflammatory response, and increased Foxp3 mRNA and protein expression. Lipopolysaccharide had adverse effects on the abortion-prone model. Conclusions These data suggest that CD4+CD25+Foxp3+ Tregs regulate immune homeostasis in URSA via the TLR4/nuclear factor-κB pathway, and that the TLR4 antagonist E5564 may be a novel and potential drug for treating URSA.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Satu Salmi ◽  
Anton Lin ◽  
Benjamin Hirschovits-Gerz ◽  
Mari Valkonen ◽  
Niina Aaltonen ◽  
...  

Abstract Background FoxP3+ Regulatory T cells (Tregs) and indoleamine-2,3-dioxygenase (IDO) participate in the formation of an immunosuppressive tumor microenvironment (TME) in malignant cutaneous melanoma (CM). Recent studies have reported that IDO expression correlates with poor prognosis and greater Breslow’s depth, but results concerning the role of FoxP3+ Tregs in CM have been controversial. Furthermore, the correlation between IDO and Tregs has not been substantially studied in CM, although IDO is known to be an important regulator of Tregs activity. Methods We investigated the associations of FoxP3+ Tregs, IDO+ tumor cells and IDO+ stromal immune cells with tumor stage, prognostic factors and survival in CM. FoxP3 and IDO were immunohistochemically stained from 29 benign and 29 dysplastic nevi, 18 in situ -melanomas, 48 superficial and 62 deep melanomas and 67 lymph node metastases (LNMs) of CM. The number of FoxP3+ Tregs and IDO+ stromal immune cells, and the coverage and intensity of IDO+ tumor cells were analysed. Results The number of FoxP3+ Tregs and IDO+ stromal immune cells were significantly higher in malignant melanomas compared with benign lesions. The increased expression of IDO in melanoma cells was associated with poor prognostic factors, such as recurrence, nodular growth pattern and increased mitotic count. Furthermore, the expression of IDO in melanoma cells was associated with reduced recurrence˗free survival. We further showed that there was a positive correlation between IDO+ tumor cells and FoxP3+ Tregs. Conclusions These results indicate that IDO is strongly involved in melanoma progression. FoxP3+ Tregs also seems to contribute to the immunosuppressive TME in CM, but their significance in melanoma progression remains unclear. The positive association of FoxP3+ Tregs with IDO+ melanoma cells, but not with IDO+ stromal immune cells, indicates a complex interaction between IDO and Tregs in CM, which demands further studies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lourdes Rocamora-Reverte ◽  
Franz Leonard Melzer ◽  
Reinhard Würzner ◽  
Birgit Weinberger

The immune system is a tightly regulated network which allows the development of defense mechanisms against foreign antigens and tolerance toward self-antigens. Regulatory T cells (Treg) contribute to immune homeostasis by maintaining unresponsiveness to self-antigens and suppressing exaggerated immune responses. Dysregulation of any of these processes can lead to serious consequences. Classically, Treg cell functions have been described in CD4+ T cells, but other immune cells also harbour the capacity to modulate immune responses. Regulatory functions have been described for different CD8+ T cell subsets, as well as other T cells such as γδT cells or NKT cells. In this review we describe the diverse populations of Treg cells and their role in different scenarios. Special attention is paid to the aging process, which is characterized by an altered composition of immune cells. Treg cells can contribute to the development of various age-related diseases but they are poorly characterized in aged individuals. The huge diversity of cells that display immune modulatory functions and the lack of universal markers to identify Treg make the expanding field of Treg research complex and challenging. There are still many open questions that need to be answered to solve the enigma of regulatory T cells.


2018 ◽  
Author(s):  
Nicholas Borcherding ◽  
Kawther K. Ahmed ◽  
Andrew P. Voigt ◽  
Ajaykumar Vishwakarma ◽  
Ryan Kolb ◽  
...  

Regulatory T cells (Tregs) are a population of T cells that exert a suppressive effect on a variety of immune cells and non-immune cells. The suppressive effects of Tregs are detrimental to anti-tumor immunity. Recent investigations into cancer-associated Tregs have identified common expression patterns for tumor-infiltration, however the functional heterogeneity in tumor-infiltrating (TI) Treg is largely unknown. We performed single-cell sequencing on immune cells derived from renal clear cell carcinoma (ccRCC) patients, isolating 160 peripheral-blood (PB) Tregs and 574 TI Tregs. We identified distinct transcriptional TI Treg cell fates, with a suppressive subset expressing CD177. We demonstrate CD177+ TI-Tregs have preferential suppressive effects in vivo and ex vivo. Gene signatures derived the CD177+ Treg subset had superior ability to predict survival in ccRCC and seven other cancer types. Further investigation into the development and regulation of TI-Treg heterogeneity will be vital to the application of tumor immunotherapies that possess minimal side effects.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Lili Huang ◽  
Yeye Guo ◽  
Shujing Liu ◽  
Huaishan Wang ◽  
Jinjin Zhu ◽  
...  

AbstractRegulatory T cells (Tregs) are essential in the maintenance of immunity, and they are also a key to immune suppressive microenvironment in solid tumors. Many studies have revealed the biology of Tregs in various human pathologies. Here we review recent understandings of the immunophenotypes and suppressive functions of Tregs in melanoma, including Treg recruitment and expansion in a tumor. Tregs are frequently accumulated in melanoma and the ratio of CD8+ T cells versus Tregs in the melanoma is predictive for patient survival. Hence, depletion of Tregs is a promising strategy for the enhancement of anti-melanoma immunity. Many recent studies are aimed to target Tregs in melanoma. Distinguishing Tregs from other immune cells and understanding the function of different subsets of Tregs may contribute to better therapeutic efficacy. Depletion of functional Tregs from the tumor microenvironment has been tested to induce clinically relevant immune responses against melanomas. However, the lack of Treg specific therapeutic antibodies or Treg specific depleting strategies is a big hurdle that is yet to be overcome. Additional studies to fine-tune currently available therapies and more agents that specifically and selectively target tumor infiltrating Tregs in melanoma are urgently needed.


2016 ◽  
Vol 14 (6) ◽  
pp. 5556-5566 ◽  
Author(s):  
Yunhu Yu ◽  
Fang Cao ◽  
Qishan Ran ◽  
Xiaochuan Sun

Sign in / Sign up

Export Citation Format

Share Document